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GLOSSARY

BrainStream BrainStream is a MATLAB-based software package for realtime
processing of continuous data streams.

BOLD BOLD or Blood Oxygenation Level Dependent functional magnetic reso-
nance imaging is a form of magnetic resonance imaging of the brain that registers
blood flow to functioning areas of the brain.

Channels A channel in fMRI refers to the time course data of one voxel. A typical
fMRI volume contains thousands of these channels.

FieldTrip FieldTrip is the MATLAB software toolbox for EEG, MEG and fMRI
analysis that is being developed at the Center for Cognitive Neuroimaging of the
Donders Institute for Brain, Cognition and Behavior together with collaborating
institutes.

Matrix or Display Matrix The total number of pixels in the selected matrix, which
is described by the product of its phase and frequency axis. For example if the
readout and phase resolution of an fMRI is 64 and 48 respectively then the display
matrix would be 64 x 48.

Development of a real-time functional magnetic resonance imaging pipeline.
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xii GLOSSARY

fMRI fMRI or Functional magnetic resonance imaging, is a technique for mea-
suring brain activity by detecting the changes in blood oxygenation and flow that
occur in response to neural activity. When a brain area is more active it consumes
more oxygen and to meet this increased demand blood flow increases to the active
area. fMRI can be used to produce activation maps showing which brain regions
are involved in a particular mental process.

PACE PACE or Prospective Acquisition CorrEction is Siemens implementation
of online motion correction in which MRI gradients are changed whenever head
motion occurs such that the same spatial location in the brain are scanned no
matter where the head moves inside the scanner.

HRF HRF or Hemodynamic response function is the predicted BOLD response to
an instantaneous neuronal signal. Its shape and delay varies between individuals,
across brain areas, with alertness etc. The sluggishness or inertia of the HRF
limits the temporal resolution of fMRI.

Figure 0.1 Hemodynamic response function of the neural activity evoked by a stimulus at
time point 0s. The BOLD activity reaches the peak at around 6s and decays with an undershoot
at 12s before reaching a steady state at around 20s. The delay of 6s between the stimulus and
getting a maximum BOLD signal is called the hemodynamic inertia

.

Longitudinal equilibrium When a scanner is first started the MR signal is much
higher than what it will be later on during the experiment. It takes about at least 3s
before a quasi stable MR signal level(equilibrium) is reached. Because the scans
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collected till the longitudinal equilibrium has reached have higher contrast then
the scans that follow, therefore these few scans need to discarded from analysis.

Preprocessing data buffer The preprocessed data buffer is a FieldTrip buffer
which receives data from raw data buffer, one sample at a time, and applies all
the preprocessing steps to it. The preprocessed data is stored so that another
application down the line can access it whenever needed.

Phase resolution The two axes in an image are thus the "readout" axis and the
"phase-encode" axis. For a transaxial image in the traditional orientation (z-axis
along the main magnetic field), the z-gradient is used to select the slice. The
y-gradient may be used for "phase-encoding" and the x-gradient for "frequency-
encoding" or "readout" (or vice versa). The number of voxels in the y direction,
is known as the phase resolution.

Readout resolution The two axes in an image are thus the "readout" axis and the
"phase-encode" axis. For a transaxial image in the traditional orientation (z-axis
along the main magnetic field), the z-gradient is used to select the slice. The
y-gradient may be used for "phase-encoding" and the x-gradient for "frequency-
encoding" or "readout" (or vice versa). The number of voxels in the x direction,
is known as the readout resolution.

Raw data buffer Raw data buffer is a FieldTrip buffer that can receive raw
neurological data from a data acquisition client such EEG, MEG or fMRI. The
FieldTrip buffer is a network transparent TCP server that allows the acquisition
client to stream data to it per sample or in small blocks, while at the same time
previous data can be analyzed.

Real-time In streaming applications, an operation on a data sample is said to be
real-time if it is completed before the next sample becomes available.

Repetition time or TR TR is the time interval between two successive scans.
One scan is acquired in each TR. Each scan contains N slices as specified in the
acquisition protocol.

StimBox A toolbox (in progress) which uses Psychtoolbox for developing dynam-
ically updateable agenda-based stimulus presentation designs.

Scan A scan refers to the one acquisition of the whole/ partial brain data. Each
scan contains N different slices as specified in the fMRI scanner setting.

Sample A sample in real-time fMRI refers to one volume of MRI brain data.

SPM SPM is a MATLAB software package implementing Statistical Parametric
Mapping for neuroimaging data. Statistical Parametric Mapping refers to the
construction and assessment of spatially extended statistical processes used to test
hypotheses about functional imaging data.



xiv GLOSSARY

Slice A slice is one slab of brain voxels. Each slice contain R x P voxels, where
R is the readout resolution and P in the phase resolution. N slices of the brain
constitute one volume or scan.

Volume A volume is the same as a Scan. Each volume contains N slices as specified
in the MRI sequence. In normal 2D-EPI sequences, each volume is acquired slice
by slice. In 3D EPI sequences, all the slices are acquired at once.



CHAPTER 1

INTRODUCTION

1.1 FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI)

Magnetic resonance imaging(MRI) is a non-invasive technique that uses strong mag-
netic fields to form high resolution images of the brain and body. Functional mag-
netic resonance imaging or fMRI is an extension of MRI to measure quick and tiny
metabolic changes that take place in the active brain. Thus, fMRI studies are capable
of providing not only an anatomical view of the brain, but a minute-to-minute record-
ing of actual brain activity based on blood-oxygen-level-dependent (BOLD) signal
changes related to neuronal activity across the entire brain. The ability of fMRI to
track changes in the neuronal activity has proved very useful in localizing task related
brain activations and hence in the functional mapping of brain.

Development of a real-time functional magnetic resonance imaging pipeline.
Copyright c© 2012 University of Twente & Radboud University, Nijmegen
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2 INTRODUCTION

1.2 REAL-TIME FUNCTIONAL MAGNETIC RESONANCE IMAGING
(rtfMRI)

In typical fMRI studies, data acquired during an experiment, is analyzed offline
which usually take several hours and sometimes even several days after the initial
acquisition of the data. This presents some unique problems. For example,

• The scanner operator may not be able to detect technical failures or a subject’s
poor compliance on time, and will not be able to react in timely manner [14].
Later on, if a problem is discovered during the offline analysis, then often there
is very little that could be done to alleviate it. This may result in discarding the
whole session data. Since a typical scanner costs around 600 Euros per hour
to operate, such a loss of data could be very costly. To avoid this, the ideal
scenario would be to know the results while the subject is still inside the MR
scanner and before the experiment is concluded.

• In a traditional fMRI experiment, a subject cannot be presented with any kind
of neurofeedback because the processing of fMRI data is done at a later time
and no results are available to be presented to the subjects while the cognitive
task is being performed inside the scanner. If this processing can be done in
real time, then the subject’s task performance can be fed back to them help
them modulate their brain activation patterns.

To overcome all these problems real-time fMRI was introduced. In a real-time
fMRI experiment, the data is processed as soon as it becomes available. In an fMRI
experiment, a new scan (brain volume) becomes available every TR (Repetition Time)
seconds. For real-time studies, the TR may range from 1s to 2.5s, depending on how
many brain slices are acquired. Therefore for real time operation, its crucial that each
scan be processed within a TR, otherwise the data processing will lag behind the data
acquisition and the setup will no longer remain real time. With the advent of faster
hardware and optimized software routines, real time analysis and acquisition of the
fMRI has become possible.

1.2.1 Applications of real-time functional Magnetic Resonance
Imaging

Real time analysis of fMRI data can be used to:

• Monitor data quality and changing scan parameters, if need be

• Monitor changes in subject’s attention and performance

• Assess experiment success while its being performed

• Retrieve rapid results resulting in cost saving
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• Novel paradigm designs with feedback

Given below are some of the domain specific uses of real-time.

Controlling perception of pain Several studies have shown converging evi-
dence the real-time fRMI neurofeedback can help subjects to regulate their own
brain activity in specific regions [13, 5, 11]. This renders real time fMRI useful for
clinical applications as well. If an individual can learn to directly control activation
of localized regions within the brain, this approach might provide control over the
neurophysiological mechanisms that mediate behavior and cognition and could po-
tentially provide a different route for treating disease. Subjects can be trained to learn
to control activation in regions involved in pain perception and regulation [6].

Pre-surgical planning Other application of real-time fMRI could be in pre-
surgical planning. For instance, a surgeon operating a lesion could use functional
brain studies to minimize the extent of the damage that could result in the operation
[7]. Real-time results of these functional studies are therefore critical. In a clinical
setting where a doctor has to see many patients everyday, the real-time analysis of the
patient data not only saves cost but also paves the path for faster treatment process.

Observing brain disorders in action In spreading disorders such as Jack-
sonian seizures or migraine, the possibility of observing activation maps of such
phenomena in real time could lead to a better understanding of the spreading mech-
anism of the disorder as well as to the development of therapeutic interventions to
arrest the symptoms progression [9].

These and several other potential applications are the compelling factors that motivate
us to develop a fully real-time analysis system for fMRI time series. In simple terms,
the research’s goal is to see the activation map unfolds in real time as the subject
performs the designated task, thereby enabling us to look how the brain works in real
time.

1.2.2 Challenges involved in real-time fMRI

In order to design a real-time fMRI pipeline, we need to overcome two main diffi-
culties, namely:

1. the need for a general real-time analysis tool and

2. the computational requirement.

The former requires analysis tools that we can use in real-time to be able to process
fMRI data in the same rigor as that of offline analysis methods, while the latter
demands computational prowess that can cope with the computational demands.
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1.2.3 Project Goals

Although the groundwork for this project was laid by Stephan Klanke in 2010, the
pipeline he developed worked only for the 1.5T scanner. Since 3T field strength
scanners are now the de facto standard for carrying out neurological investigations,
there was a need to develop and test the pipeline on 3T scanners. The current work
therefore, has the following two aims:

• Export the real-time pipeline to the 3T scanner

• To develop real-time brain extraction so that non brain voxels, such as skull and
Cerebral Spinal Fluid (CSF) voxels are removed so that only voxels constituting
the gray and white matter remain.

• To Develop real time slice timing correction using Sinc interpolation which is
an improvement over the previously developed linear interpolation based slice
timing correction.

• To modify the pipeline to cope with PACE (Prospective Acquisition CorrEc-
tion) sequences. PACE based sequences spit out two series of images only one
of which needs to be used in any experiment. The modified pipeline should
allow not only the option of using PACE but should also allow the user select
which of the two series is used for analysis.

• To test and develop the current protocol for starting an fMRI experiment and
identify the bottlenecks in the design and give recommendations for future
improvements.

The real-time fMRI pipeline available at the time was scantly documented and there
was a need for a detailed document which is thorough enough for a successful
experiment, yet easy enough to comprehend and follow. This report of this project
is therefore meant to serve as a formal training manual for prospective users aiming
to develop their own real time fMRI experiments using this pipeline. The report
merges the documentation currently available on the FieldTrip website and extends
this information to give a comprehensive guide to real-time fMRI experiment design
and execution.

The rest of this report gives a detailed description of the entire real-time setup and its
various components. Chapter 2 gives a systems level overview of the whole exper-
imental setup required for running a real time experiment on Siemens 3T scanners.
The fours chapters that follow explain each of the four modules of the real time
setup. The third to last chapter mentions step-by-step protocol instructions on how
to start the fMRI pipeline for a successful experiment execution. The second to last
chapter mentions the results of the evaluation of the pipeline. The last chapter gives
suggestions for future improvements.



CHAPTER 2

OVERVIEW OF THE REAL-TIME fMRI
PIPELINE

The current implementation of the real-time pipeline contains four separate module
as shown in Figure 2.1, each one performing some specific task in the pipeline. These
modules are:

• Scanner Module

• Preprocessing Module

• BCI Module

• Synchronization Module

To better understand what each module does in the pipeline, a brief description of
each of these modules will be presented in this chapter (A more detailed description
of the each of these modules can be found in the subsequent chapters).

Development of a real-time functional magnetic resonance imaging pipeline.
Copyright c© 2012 University of Twente & Radboud University, Nijmegen
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6 OVERVIEW OF THE REAL-TIME fMRI PIPELINE

Figure 2.1 Real-time fMRI pipeline at Donders Institute for SIEMENS 3T Magnetom
Scanner
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2.1 SCANNER MODULE

The scanner module contains the scanner monitor PC where scan paraments are
adjusted at the start of each rtfMRI experiment. This is the only computer in the
pipeline that can directly control the operation of the scanner. No other PC in the
pipeline is allowed to control the scanner.

Furthermore, on the scanner monitor PC, a program called gui streamer is run which
sends each newly acquired functional scan to the raw data buffer in the preprocessing
module, where the raw data is received and sent further down the preprocessing
pipeline.

The scanner monitor PC also sends scanner triggers to the synchronization module
where the scanner triggers are converted into FieldTrip buffer events, and sent to
the FieldTrip buffer in the preprocessing module where these events trigger the
acquisition of the scan data from the scanner module.

2.2 PREPROCESSING MODULE

The preprocessing module is a computer on the network that receives the raw scans
from the scanner module and scanner trigger events from the FieldTrip Event Gener-
ation module. The received FieldTrip events trigger the acquisition of a new volume
from the scanner module.

The data received in the raw data buffer is passed into a second buffer where the fMRI
data is preprocessed one scan at a time. The preprocessing steps include dummy scan
rejection, motion correction, slice time correction, brain extraction, spatial smoothing
and online GLM for nuisance signal removal.

The preprocessed data from this buffer is then passed on to the BCI module.

2.3 BCI MODULE

The BCI module has the responsibility to receive the preprocessed streaming data
from the preprocessing module and use it in a real time BCI loop. In our setup,
we used BrainStream toolbox to control the BCI loop. This module has various
responsibilities as mentioned below:

• read streaming data from the preprocessing module

• extracting features

• classifying features
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• generating stimulus based on the result of the classification (dynamic adaptive
stimulus generation)

The stimulus generated in this module is sent to the Synchronization module. This
is because in our setup, this computer is connected to the scanner projector.

2.4 SYNCHRONIZATION MODULE

Whenever a new functional scan is started the scanner generates a trigger. This trigger
can be used to signal the raw data buffer (FieldTrip) on the preprocessing module to
start acquiring the scan data. However, this trigger cannot be used directly by the
FieldTrip buffer. It has to be converted into a format acceptable to the buffer. This is
what happens in synchronization module. The scanner trigger received on the COM7
port of this module is converted into FieldTrip buffer events and passed to the raw
data buffer on the preprocessing module to trigger data acquisition whenever a new
functional scan data becomes available.

The module also receives a ‘RESET’ message on its UDP port 1990 which resets the
internal pulse counter. Its very important that before the start of the functional scans
a ’RESET’ is sent by the scanner.

Because this is the only computer connected to the scanner projector, the stimulus
(if generated on some other PC, which in our case it is) should be connected to this
module.



CHAPTER 3

SCANNER MODULE

This module has a Windows PC that runs the Siemens software which controls the
operation of the entire scanner. Subjects can be registered and scan parameters
adjusted at the start of the experiment on this PC. Furthermore, the localizer images
acquired during the initial localizer scan can also be viewed on this computer. These
localizer scans, or Haste scans as they are called, are used in positioning the slices
over brain regions of interest for the subsequent functional runs.

Once the functional sequence is run, the data generated needs to be transferred to a
PC on the network so that it can be further processed. Although Siemens software
(Version VB17) provides the facility for real-time export of the fMRI images, there
seems to be considerable jitter in the arrival of the files using this tool. Furthermore,
this tool does not allow for the real-time export of the images to PC on the network
(see Figure 3.1). Due to these limitations, it was decided to design a custom real time
export tool that could export the raw pixel data to a remote PC on the network for
further processing.

Development of a real-time functional magnetic resonance imaging pipeline.
Copyright c© 2012 University of Twente & Radboud University, Nijmegen
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10 SCANNER MODULE

SIEMENS Magnetom 3T scanner

Raw pixel data

over Ethernet to  the 

Preprocessing ModuleReal time 

data export

Scanner triggers to  the 

Synchronization Module

Stimulus 

data  from the 

Synchronization 

Module

Figure 3.1 Block diagram of the Scanner Module with it’s various IO’s

3.1 PIXEL DATA/ MOSAIC FILES

The scanner stores raw pixel data belonging to each functional scan in the form
a Mosaic file. The Mosaic format stores the 3D image slices as a 2D grid - or
mosaic. With the current Siemens scanner software (VB17A), a new mosaic file
E:\IMAGE\xx-yyyy\zzzzzzz.PixelData is created on the E:\ drive of the host
computer immediately after each scan. This file contains pixel data as unsigned 16-
bit integers, where different slices show up as tiles of a mosaic. The mosaic seems
to be always square, and blank tiles are appended if the number of slices is smaller
than the number of tiles in the mosaic.

EXAMPLE 3.1

The MR sequence is set up to scan N=35 slices with readout resolution R=64
pixels and phase resolution P=48 pixels. In this case, the mosaic will contain
6x6 tiles (as shown in Figure 3.2) with 1 empty tile marked by -- and slices
ordered as follows:
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01 02 03 04 05 06

07 08 09 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 --

Figure 3.2 Mosaic image of functional data when 35 slices are acquired in each scan. The
mosaic contains 6 x 6 tiles and the last tile is empty

The pixel dimensions of the mosaic will be (64*6) x (48*6), that is, 384 x 288,
and thus the total number of pixels is 110592, corresponding to a file size of
221184 bytes. Within the file, the pixels are written row after row, that is, the
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first 768 bytes contain the 384 pixels of the first row, corresponding to the first
rows of slices 01-06, and so on.

Within the FieldTrip buffer, each scan is represented as one sample with RxPxN
channels, with data ordering as in MATLAB R©, that is, the pixel data is reshaped
such that slices (and their rows) are contiguous in memory, and empty tiles are
dropped. For the above example, we would have 64x48x35 = 107520 channels.
The data format is kept as INT16_T.
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EXAMPLE 3.2

The MR sequence is set up to scan N=19 slices with readout resolution R=64
pixels and phase resolution P=64 pixels. In this case, the mosaic will contain
5x5 tiles (as shown in Figure 3.3) with 6 empty tiles marked by -- and slices
ordered as follows:

01 02 03 04 05

06 07 08 09 10

11 12 13 14 15

16 17 18 18 --

-- -- -- -- --

Figure 3.3 Mosaic image of functional data when 19 slices are acquired in each scan. The
mosaic contains 5 x 5 tiles and the last 6 tiles are empty
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The pixel dimensions of the mosaic will be (64*5) x (64*5), that is, 320 x 320,
and thus the total number of pixels is 102400, corresponding to a file size of
204800 bytes. Within the file, the pixels are written row after row, that is, the
first 640 bytes contain the 320 pixels of the first row, corresponding to the first
rows of slices 01-06, and so on.

Within the FieldTrip buffer, each scan is represented as one sample with RxPxN
channels, with data ordering as in MATLAB R©, that is, the pixel data is reshaped
such that slices (and their rows) are contiguous in memory, and empty tiles are
dropped. For the above example, we would have 64x64x19 = 77824 channels.
The data format is kept as INT16_T.

3.2 PIXELDATAGRABBER

The next problem is to grab these mosaic files, as they are generated and transfer
them to a remote PC on the network. In order to react efficiently to a new mosaic file,
which shows up as a file with name and location not known in advance (apart from
its suffix), the Windows API function ReadDirectoryChangesW is used to monitor
E:\IMAGE and all of its subdirectories. Whenever a new file is created or modified
anywhere in that tree, a Windows event is triggered and the corresponding path is
made available. This mechanism is wrapped up in the C++ class FolderWatcher.

A second C++ class, PixelDataGrabber, encapsulates the actual real-time fMRI ac-
quisition mechanism based on the FolderWatcher and client-side code of the FieldTrip
buffer. Detailed Doxygen-style documentation is provided in PixelDataGrabber.

h, and developers can also look at pixeldata_to_remote_buffer.cc for a simple
example of using this class in a command-line application. A slightly more complex
program is compiled fromgui_streamer.cc, which combines thePixelDataGrabber
with a small GUI written with FLTK (http://www.fltk.org). This program pro-
vides a few buttons for starting and stopping to monitor for new files, and to connect
to/disconnect from a FieldTrip buffer (see Figure 3.4).

3.3 PROTOCOL INFORMATION

How does the PixelDataGrabber determine the number of slices and their dimen-
sions? For this to work, the best way is to modify the MR sequence by adding

#ifndef VXWORKS

pMrProt->fwrite("E:\\image\\mrprot.txt")

#endif

to the function fSeqCheck in the sequence code, which is executed once before the
first scan. This will dump the complete protocol information to the specified location.



PROTOCOL INFORMATION 15

With the PixelDataGrabber listening for files in E:\image, it will note this and
immediately parse the new protocol. The information written to that file is the same
that is contained in one of the private tags of the DICOM headers, which the scanner
writes using the normal (offline) mechanisms. The filename mrprot.txt is currently
hard-coded in both the PixelDataGrabber and the standard sequences used at the
DCCN. If you run an unmodified MR sequence that does not dump the information,

Figure 3.4 gui streamer: A graphical user interface to select the target for real-time fMRI
data transfer

you can try to create your own mrprot.txt and place it in E:\image before running
the scans. In this case, the PixelDataGrabber will read that file when the first scan
arrives. In case the PixelDataGrabber encounters a mismatch between protocol
specifications and the size of the .PixelData files, it will report an error and not write
the sample. The most important ingredients for a hand-made protocol file are shown
in the following example:

alTR[0] = 1500000

lContrasts = 1

sKSpace.lBaseResolution = 64
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sSliceArray.lSize = 19

sGroupArray.asGroup[0].dDistFact = 0.1

sSliceArray.ucMode = 0x1

ucReconstructionMode = 0x1

sSliceArray.asSlice[0].sPosition.dSag = 0.2182624061

sSliceArray.asSlice[0].sPosition.dCor = -11.23376707

sSliceArray.asSlice[0].sPosition.dTra = -7.52395635

sSliceArray.asSlice[0].sNormal.dSag = 0.0004806160937

sSliceArray.asSlice[0].sNormal.dCor = 0.3056497638

sSliceArray.asSlice[0].sNormal.dTra = 0.9521438919

sSliceArray.asSlice[0].dThickness = 3

sSliceArray.asSlice[0].dPhaseFOV = 211

sSliceArray.asSlice[0].dReadoutFOV = 211

sSliceArray.asSlice[0].dInPlaneRot = 0.9534438919

Given below is the description of each of the field so that you can make your own
mrprot.txt file based on your protocol settings. This information would be useful
if you are unable to modify the scanner sequence to dump the protocol information
in the mrprot.txt file at the start of the functional run. In this case, you can use the
information below to make your own mrprot.txt file.

3.3.1 alTR[0]

Specify the Repetition Time (TR) in microseconds in this field. If the TR is 1.5s,
then set

alTR[0] = 1500000

3.3.2 lContrasts

Specify the number of echoes in the acquisition protocol in this filed. If the number
of echoes is 1, then set

lContrasts = 1

If the number of echoes is 3, then set

lContrasts = 3

3.3.3 sKSpace.lBaseResolution

Specify the matrix size in this field. If the matrix size is 64 x 64, then set

sKSpace.lBaseResolution = 64
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3.3.4 sSliceArray.lSize

Specify the number of slices acquired in each TR in this field. For example, if the
number of slice acquired in each scan is 19 then set

sSliceArray.lSize = 19

3.3.5 sGroupArray.asGroup[0].dDistFact

Specify the distance factor between the slices in this field. If the distance factor is 10
percent of the slice thickness then set

sGroupArray.asGroup[0].dDistFact = 0.1

If the slices have no gap between them, then set

sGroupArray.asGroup[0].dDistFact = 0.0

3.3.6 sSliceArray.ucMode

Specify the slice order in this field. If the slices are acquired in ascending order, then
set

sSliceArray.ucMode = 0x1

If the slices are acquired in descending order, then set

sSliceArray.ucMode = 0x2

If the slices are acquired in interleaved order, then set

sSliceArray.ucMode = 0x4

3.3.7 ucReconstructionMode

Different sequences can output different image types. This field specifies the type of
image generated and whether to keep the magnitude or phase part of the image or
both. For example, to select single magnitude image, set

ucReconstructionMode = 0x1

For usual EPI sequences used in real time experiments, this is the recommended
setting.
To select single phase image, set

ucReconstructionMode = 0x2
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To select real part only (single image), set

ucReconstructionMode = 0x4

To select magnitude+phase image (we need to skip the phase), set

ucReconstructionMode = 0x8

To select real part+phase (we need to skip the phase), set

ucReconstructionMode = 0x10

For PSIR(Phase Sensitive Inversion Recovery Sequence), set

ucReconstructionMode = 0x20

3.3.8 sSliceArray.asSlice[0].sPosition

The three fields mentioned below should encode slice position (X/Y/Z) of the first
slice.

sSliceArray.asSlice[0].sPosition.dSag = 0.2182624061

sSliceArray.asSlice[0].sPosition.dCor = -11.23376707

sSliceArray.asSlice[0].sPosition.dTra = -7.52395635

3.3.9 sSliceArray.asSlice[0].sNormal

The three fields mentioned below should encode the slice normal vector of the first
slice.

sSliceArray.asSlice[0].sNormal.dSag = 0.0004806160937

sSliceArray.asSlice[0].sNormal.dCor = 0.3056497638

sSliceArray.asSlice[0].sNormal.dTra = 0.9521438919

3.3.10 sSliceArray.asSlice[0].dThickness

Specify slice thickness in the field. If the slice thickness is 3mm, then set

sSliceArray.asSlice[0].dThickness = 3

3.3.11 sSliceArray.asSlice[0].dPhaseFOV

Specify the Field of View (in mm) in the phase encoding direction in this field.

sSliceArray.asSlice[0].dPhaseFOV = 211
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3.3.12 sSliceArray.asSlice[0].dReadoutFOV

Specify the Field of View (in mm) in the frequency encoding direction in this field.

sSliceArray.asSlice[0].dReadoutFOV = 211

3.3.13 sSliceArray.asSlice[0].dInPlaneRot

In this field, specify in-plane-rotation of the first slice around normal.

sSliceArray.asSlice[0].dInPlaneRot = 0.9534438919

If no such information is available then remove this field from the mrprot.txt file.

3.4 DECODING THE PROTOCOL FILE

Siemensap, a plain C library in fieldtrip/realtime/datasource/siemens

provides some functions and data types to parse the ASCII format Siemens protocol
data into a list or tree of key/value items. Currently supported value types are
strings, long integers, and double precision numbers. Field types are determined
automatically to a large extend (e.g. a dot in a number implies a double precision
value), but some special rules are added. For example, a field name that starts with
‘d’ will always be parsed as a double precision value, even if the value given in ASCII
form looks like an integer. Please see siemensap.h for Doxygen-style documentation
of the API.

The same C library is also used within the sap2matlab MEX file for decoding the
ASCII protocol into a MATLAB data structure. However, this gets automatically
called in ft_read_header, so users won’t need to worry if they stick to the usual
FieldTrip functions.





CHAPTER 4

PREPROCESSING MODULE

The data acquired on the scanner monitor is transferred in real time to the preprocess-
ing module. The preprocessing module is a computer on the network which receives
the raw scans from the scanner module and FieldTrip events from the Synchroniza-
tion Module. The received FieldTrip events trigger the acquisition of the new volume
from the scanner module. This module runs two FieldTrip buffers. The first buffer,
called the raw data buffer, receives the real time fMRI scans and FieldTrip event at a
specified port (1972 by default, but it can changed in the GUI streamer in Hostname
Port field and in the serial event.conf file). The second buffer, called the processed
data buffer, takes the raw data one scan at a time from the raw data buffer, applies all
the preprocessing steps and sends the preprocessed scan to the Classification Module.
Furthermore, both raw and preprocessed data streams can be stored at any desired
location (network or the local PC). These files can then be rerun offline to simulate
the online experiment.

The following operations are performed in the preprocessing pipeline:

• Dummy scan rejection

Development of a real-time functional magnetic resonance imaging pipeline.
Copyright c© 2012 University of Twente & Radboud University, Nijmegen
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Figure 4.1 Block diagram of the Proprocessing Module with it’s various IO’s
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• Slice time correction

• Motion correction

• PACE series selection

• Brain extraction

• Online GLM for nuisance removal

• Spatial smoothing

All these operations are performed by a FieldTrip function ft omri pipeline nuisance.m.
Different configuration setting can be made in this function. We will now describe
these different configuration setting for all the preprocessing operations.

4.1 DUMMY SCAN REJECTION

Whenever an fMRI experiment is started, the first few scans have a higher contrast
than the scan acquired after longitudinal equilibrium has been achieved. Particularly
images with TR<2s have low contrast between grey matter, white matter and CSF, and
image registration can be poor. If these first few scans are acquired then they should
be dropped afterwards from the analysis. The number of initial scans that should be
dropped, depends on the TR and is chosen to guarantee more than 3 seconds of time
for stabilization. So;

TR > = 3001ms 1 dummy scan

3001 < TR <= 1501ms 2 dummy scans

1501 < TR <= 1001ms 3 dummy scans

Dummy scans = ROUNDUP(3001/TR)

So, in general the number of dummy scan to be dropped can be calculated by:

Dummy scans = ROUNDUP(3001/TR)

During data analysis, care should be taken to take into account that while dummy
scans are being dropped, the scanner triggers are being generated but no actual data
is available to be analyzed. For example, if 1000 functional scans are generated by
the scanner out of which 5 initial dummy scans are dropped, then there will be only
995 functional scans but 1000 scanner events. The first five dummy scans that are
dropped will belong to the first trial (in a block design). Dropping these dummy
scans will render the first trial of the cognitive task useless. Thus dropping Dummy
scans is not the smartest way to tackle the longitudinal equilibrium issue, however
its included in the preprocessing pipeline for the sake of completeness.

The recommended option to tackle longitudinal equilibrium problem is to set Dummy
scans to 0 in the preprocessing scrip, and turn ON the Prep Scans in the MRI sequence.
When the Prep Scans are turned ON, no scans and scanner pulses are generated
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until longitudinal equilibrium is reached. When the first scan is generated, the T2
equilibrium has already been reached so there is no need to drop the initial scans. In
this case, dummy scans should be set to zero.

Furthermore, motion correction, Online GLM, and brain extraction will only work
correctly if either Prep scans are ON and Dummy scans set to zero or if the Prep scan
are OFF and Dummy scans are dropped. Both these scenarios are explained with
detailed examples below.

EXAMPLE 4.1

In an fMRI experiment, functional scans are acquired at TR=1.5s. The prep
scans are turned OFF in the scanner sequence. How many dummy scans should
be dropped from the analysis in the preprocessing script?

To answer this question, we use:

Dummy scans = ROUNDUP(3001/TR)

= ROUNDUP(3001/1500)

= 2

Hence in the preprocessing script set,

Dummy scans = 2;

This scenario is depicted in the Figure 4.2. As you can see the first and the
second scan scans have a higher contrast than the subsequent scans. Setting
Dummy scans to 2 will get rid of these initial 2 scans.
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Time

1st scan

2nd scan

3rd scan

Figure 4.2 The first two scans have a higher contrast than the subsequent scans due to
the fact that longitudinal equilibrium has not reached. These initial 2 dummy scans should
therefore be dropped.
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EXAMPLE 4.2

In an fMRI experiment, functional scans are acquired at TR=1.5 s. The prep
scans are turned ON in the in scanner sequence. How many dummy scans
should be dropped from the analysis in the preprocessing script?

Because the prep scans are ON, there is no need to drop any scans because
all the scans generated by the scanner will be produced after the longitudinal
equilibrium has been reached. So therefore, the following setting should be
made in the pre-processing script:

Dummy scans = 0;

This is demonstrated in the Figure 4.3 . All the scans have the same contrast
because when the Prep scan is ON, no scans are generated until the longitudinal
equilibrium has been reached. So there is no need to drop any scans.

4.2 SLICE TIMING CORRECTION

The slice timing problem occurs because in fMRI, a brain volume is acquired one
slice at a time and the last slice is acquired almost 1 TR later then the first slice. This
means that different voxels in the same brain volume, are sampled at different time
points on the Hemodynamic Response Function (HRF) curve. Ideally, we would
want all the voxels with one brain volume to be sampled at the same time point on
the HRF curve. Failure to do so may result in suboptimal statical analysis.

Slice time correction shifts the voxel time courses to align them with sample time
of the first slice. So in essence all the voxels are sampled at the same time point.
For example, if N=32 slices are acquired in each scan, then slice time correction
would align the sample points of all the voxels in slices 2,3,....N=32 to the sample
time of slice 1. This changes the data in a way as if the whole volume would have
been measured at the same moment in time as the first slice. For slice correction it’s
imperative that slice ordering be known. This piece of information can be gathered
from scanning protocol. If slice ordering is not known, then no slice timing correction
should be applied at all.

Slice time correction uses interpolation to align all the voxel sample point to the
same location on the HRF curve. Currently, we have implemented two interpolation
schemes.

1. Linear interpolation

2. Sinc interpolation
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Time

1st scan

2nd scan

3rd scan

Figure 4.3 All the scans have the same contrast when the Prep scan is ON, no scans are
generated until the longitudinal equilibrium has been reached. So there is no need to drop any
scan from anaylsis. Dummy scans should be set to zero in this case
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Linear interpolation is very fast and can be completed within 0.15 to 0.2 seconds. A
more accurate interpolation method is the Sinc interpolation method. Sinc interpola-
tion is slower and may take 1 to 2s depending on the hardware. The Sinc interpolation
algorithm is the same as that used by SPM, however it has been modified a bit to run
online. Sinc interpolation is accomplished by taking a Fourier transform of the signal
at each voxel. The Fourier transform renders any signal as the sum of some collection
of scaled and phase-shifted sine waves; once you have the signal in that form, you
can simply shift all the sines on a given slice of the brain forward or backward by
the appropriate amount to get the appropriate interpolation. There are a couple of
pitfalls to this technique, mainly around the beginning and end of your run, but these
have largely been accounted for in the current slice time correction implementations
of SPM.

4.2.1 When is it a bad idea to use slice time correction?

It’s never that bad an idea to use slice time correction, but because at most the signal
could be distorted by just one TR, this type of correction isn’t as important in block
designs. Blocks last for many TRs and figuring out what’s happening at any given
single TR is generally not a priority, and although the interpolation errors introduced
by slice timing correction are generally small, if they’re not needed, there’s not
necessarily a point to introducing them.

4.2.2 FieldTrip functions for slice time correction

Linear Interpolation

ft_omri_slice_time_init.m

ft_omri_slice_time_apply.m

Sinc Interpolation

ft_omri_slice_time_init_sinc.m

ft_omri_slice_time_apply_sinc.m

These functions have not been yet been released in the FieldTrip distribution.

4.3 MOTION CORRECTION

Head motion is a major problem during fMRI data acquisition. No matter how much
care is taken to fixate the head, some head motion is bound to occur. The sensitivity
of the analysis is determined by the amount of residual noise in the image series, so
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movement that is unrelated to the task will add to this noise and reduce the sensitivity.
Head movement can happen due to many reasons such as:

• Subject’s head starts digging into the cushions over time

• Head motion may occur due to breathing

• In some subjects the back of the skull could be oval shaped. In these subjects
the head may move quite a lot during scanning because there is no comfortable
stable position for these heads.

Any motion causes the brain voxels to shift. For example if a voxel is in slice 22, then
after motion this voxel may shift into the adjacent slice (slice 21 or 23). This presents
a huge problem. For example, in scenarios where decoding algorithms are applied
to voxel time courses, if the voxels continuously shift their position, then it becomes
difficult for decoding algorithms to learn any meaningful pattern of activity because
the voxels would not represent activity from one location of the brain but would
represent activity from many different regions of the brain. Its therefore, important
that each voxel represents the activity from one and only one unique location in the
brain through out the whole fMRI session. To accomplish this, motion correction
algorithm is applied. The motion correction applies rigid body transformation to
align all the brain volumes to a reference volume. In our implementation of motion
correction, this reference volume is the very first scan acquired. Motion correction
uses interpolation to move all the voxels in all subsequent volumes to their position in
the reference volume/scan. Various kinds of interpolation can applied, for example:

1. Nearest neighbor interpolation

2. Trilinear interpolation

3. B-Spine interpolation

The type of interpolation used can specified in the interp field in the model speci-
fication in ft_omri_align_init.m file.

model = struct(’quality’,1,’fwhm’,5,’sep’,4,’interp’,2,...

’wrap’,[0 0 0],’rtm’,0,’PW’,’’,’lkp’,1:6,...

’mat’, eye(4), ’time’, 2);

’interp’ 0 - Nearest neighbor interpolation

1 - Trilinear interpolation

2-7 - Degree of B-Spline Interpolation

By default, B-spline interpolation of degree 2 is used.

The Quality parameter controls how many voxels are used. Highest quality(1) gives
most precise results, whereas lower qualities give faster realignment. The idea is that
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some voxels contribute little to the estimation of the realignment parameters. The
quality parameter is therefore, involved in selecting the number of voxels that are
used.

The rest of the parameters are already set to their optimum values and should only
be changed by advanced users.

(a) No motion correction (a) Motion correction

Figure 4.4 (a): Shows the result of subtraction two consecutive scans when no motion
correction is applied. The edges are visible. If there is no motion, then nothing should be
visible on this plot but as there was motion, therefore we see a lot of spurious activity in this
subtraction plot. (b) Shows the result of subtraction of the same two consecutive scans when
motion correction is applied. The spurious activity has disappeared to an appreciable extent,
which is exactly what we want in a subtraction plot

4.3.1 Limitations of Retrospective Motion Correction

The motion correction that we described above is called retrospective motion cor-
rection, because it tries to correct for motion, after it has happened. This kind of
motion correction has its limitations because it cannot correct for large movements.
The quality of fMRI data is strongly hampered in the presence of substantial head
movements. Many fMRI experts recommend to reject data sets for further analysis if
head motion of more than 1-2 voxels or 5 or more millimeters is detected. Although
head motion can be corrected in image space, displacements of the head reduces the
homogeneity of the magnetic field, which is fine-tuned or shimmed prior to functional
scans for a given head position. If head movements are small, retrospective motion
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correction is a useful step to improve the data quality for subsequent statistical data
analysis.

Gaps between slices can also cause aliasing artifacts. Furthermore, re-sampling can
introduce errors, especially tri-linear interpolation. Another limitation of motion
correction is that ghosts (and other artifacts) in the images do not move according to
the same rigid body rules as the subject.

4.3.2 Limitations of Online Retrospective Motion Correction

Online retrospective motion correction algorithms perform even worse than their
offline counterparts and fail if the motion is more than the one slice thickness. In
standard offline retrospective motion correction, the motion correction algorithm
realigns each volume to one particular reference volume (sometimes the whole pro-
cedure is run twice to get a better reference). However, in the online real-time case,
we do not have the luxury choosing the best reference to align all the rest of images to.
That is why only the first scan is selected as the reference and all the rest of the scans
are aligned to this reference scan. In case the necessary translations and rotations to
counteract the head motion are large, the realigned volumes will have some "bad"
voxels at locations (in reference coordinates) that were outside the scanned volume.
These bad voxels are included in a mask so that the experimenter knows how many
bad slices are present. The mask does not remain constant but increases through out
the experiment as more and more voxels become bad due to motion. This is prob-
lematic because if one trains a classifier on good voxels, then after some time through
the experiment, some of these voxels may turn bad and hence the classification will
severely suffer because the voxels that were used during training, would no longer
be there during testing.

An effective but not so elegant fix to this problem is to mask the first few and last
few slices before the start of the experiment. The mask should be big enough so as
to ensure that throughout the whole experiment, the number of bad voxels would be
confined to those few slices which were masked and not used during training and
testing. The optimum choice is mask the first 3 slices and last 2 slices.

In the next section we describe a more elegant way of solving this problem.

4.4 PACE SERIES SELECTION

Retrospective motion correction or correcting for motion after it has occurred, can-
not correct for motion larger than slice thickness. Therefore, Prospective motion
correction or correcting the motion as it occurs, was introduced by Siemens. PACE
or Prospective Acquisition CorrEction [12], is a technique in which the MRI gradi-
ents are adjusted if head motion occurs, such that the slice position changes along
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with changes in the head position. Thus the slices always remain glued to the same
spatial location in the brain no matter where and by how much the brain moves in the
scanner.

Whenever motion is detected, PACE recalculates the new gradients and then uses
these new gradients for the next scan. Thus, there is a gap of two TRs between
the detection of motion and its correction. Any motion that does occur in this two
TR interval, cannot be corrected by PACE. This is removed by retrospective motion
correction which Siemens calls MoCo. Hence if the PACE sequence is used, it not
only corrects the images prospectively but also retrospectively. Therefore, the pace
sequence spits out two series of images:

• the first sequence is just PACE (prospectively) corrected

• the second sequence is both PACE (prospectively) and MoCO (retrospectively)
corrected.

The experimenter has the choice to decide which series to use in the preprocessing
pipeline. We recommend using the second series as it contains much less motion.

4.4.1 Configuring PACE

If the PACE sequence is used then set,

cfg.pace = 1;

If the pace sequence is not used the set,

cfg.pace = 0;

If the PACE sequence is used, then an additional choice is to be made as to which
series to use. The first series contains PACE corrected images and the second series
contains PACE & MoCo corrected images. To select the first series set,

cfg.pickSeries = 1;

To select the second series set,

cfg.pickSeries = 2;

4.4.2 Limitations of PACE

PACE cannot correct for motion greater than 25 mm. Furthermore PACE cannot
correct any spike motion such as a sneeze. Also any motion below 0.3 mm is also not
corrected because its too small a motion to be corrected prospectively. Apart from
that, PACE sequences generate twice as much data as a normal no PACE sequence.
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4.5 BRAIN EXTRACTION

Brain extraction or skull stripping involves removing the skull and cerebral spinal
fluid (CSF) voxels from all the slices. Our implementation of brain extraction
uses FSL’s Brain Extraction Tool (BET) [10]. Among the four brain extraction
utilities (SPM99 xbrain, BET, Brain Surface Extraction, McStrip), BET is the fastest
algorithm available and it is also fairly accurate as well [4]. Most brain extraction
tools like the SPM 99 x_brain generate brain mask from the anatomical scan and
then apply the mask to the functional scans to strip away the skull and CSF voxels.
However, BET can operate directly on functional scans which makes it ideal for online
setup where only functional scans can enter the pipeline. The result of applying BET
to a functional scan slice is shown in Figure 4.5.

(a) (b) (c)

Figure 4.5 Brain extraction tool applied to a once slice of the functional scan (a): Shows
the original slice before brain extraction (b) Shows the result after brain extraction (Fractional
intensity threshold was set to 0.3) (c) shows the binary mask generated which is used to mask
out non brain areas in all the subsequent scans

In our online fMRI setup, the very first functional scan in the FieldTrip buffer is
fed to the BET algorithm which generates the binary mask, which is then applied
to all subsequent scans to strip away non-brain voxels. The mask does not need to
be recalculated in subsequent scans because if the motion correction is ON, then all
the scans are aligned to the very first scan, which means that the mask for first scan
is valid for all the rest of the scans as well. It is therefore important that if Brain
Extraction is used, then motion correction should be used as well.

Brain extraction is just a one-time process that only occurs after the first scan arrives
in the buffer. Therefore it adds no delay to the pipeline except for the approximately
2s that occurs during the first scan when the binary mask is being calculated. Since
its only a one-time delay, the pipeline soon catches up.
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Exactly how much skull is stripped depends on the fractional intensity threshold
setting. Changing the fractional intensity threshold from its default value of 0.3 will
cause the overall segmented brain to become larger (<0.3) or smaller (>0.3). This
threshold must lie between 0 and 1. Currently, this parameter has been set to 0.3
because it generates the best results. This value is also recommended by the designers
of BET tool for stripping skull from functional scans.

4.5.1 Dependencies

To be able to use Brain Extraction Tool, the BET utility should be present on the
preprocessing system.

For Linux For Linux systems its important that full FSL should be installed.

For Windows For Windows systems its not important to install FSL. We will
provide bet.exe files for both 32 and 64 bit systems. In case these files fail to run
on your Windows platform, then you should probably install FSL1.

Both Linux and Windows would also require the NIFTI to Matlab conversion tool
which can be downloaded from MATLAB CENTRAL [2]. This tool is used because
the BET utility only works with NIFTI files and hence we need to convert the pipeline
data (which is MATLAB matrix format) to NIFTI format, apply BET to the NIFTI
file generated, create the brain mask and then convert this brain mask from NIFTI
format back to the Matlab data format.

4.6 ONLINE GLM FOR NUISANCE SIGNAL REMOVAL

General Linear Model (GLM) is a statistical model that explains data as a linear
combination of explanatory variables, confounds and noise. The idea behind using
GLM in the real-time pipeline is that we want to remove the contribution of known
noise sources from a voxel time course, so that a voxel time course represent only
the task related activity and unexplained noise. The explanatory variables are also
called regressors and these need to be removed (or regressed out) from the voxel time
courses. For this a GLM is used.

In an online GLM, the design matrix is built incrementally, scan by scan, as the data
and regressors (such as motion estimates) become available. If the GLM has to be
calculated at every scan, then after a few scans the design matrix would build up to
such as extent that estimation of GLM model in real-time would not be possible using

1BET tool is also included in MRIcron and BioImage Suite distributions, so you can also use the BET
utility from these software
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classical approach. Therefore, a Recursive Least Squares (RLS) implementation [3]
of GLM is applied to real-time fMRI data such that the duration of the experiment
has no impact on the time required to calculate the beta estimates. This technique
can reduce the memory requirements, because it is not necessary to store all the data
as only the most recent scan data is used for updating the model. Our online GLM
implementation offers three different configurations

cfg.numRegr = 1; Regresses out constant offsets

cfg.numRegr = 2; Regresses out constant offsets

and linear trends

cfg.numRegr = 5; Regresses out constant offsets,

linear trends and translational motion

Recommended Settings We recommend to set numReg to either 2 or 5. Test
your design with both 2 and 5 and then resort to the value which gives best possible
results.

4.7 SPATIAL SMOOTHING

In spatial smoothing, neighboring voxel values are averaged which essentially low
pass filters the data thereby removing high frequency fluctuations from the data.
As a result sharpness of the image is reduced which is why this process is called
smoothing. Smoothing is performed by convolving the fMRI signal with a Gaussian
kernel (function) which has a specific width and shape of a normal distribution curve.
The size of this smoothing kernel is specified by its Full Width Half Maximum
measure. Full width at half maximum (FWHM) is an expression of the extent of a
function, given by the difference between the two extreme values of the independent
variable at which the dependent variable is equal to half of its maximum value.

0 mm 4 mm 8 mm

Figure 4.6 This figure demonstrates the effect of increasing the width of smoothing kernel
on smoothness of functional data
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Spatial smoothing is carried out on each volume of the fMRI data set separately. It’s
intended to reduce noise without reducing valid activation; this is successful as long as
the underlying activation area is larger than the extent of the smoothing. Thus if you
are looking for very small activation areas then you should maybe reduce smoothing
to 5mm, and if you are looking for larger areas, you can increase it, maybe to 10 or
even 15 mm. To turn off spatial smoothing simply set FWHM to 0. Figure 4.6 depicts
the effect of increasing the smoothing from 0 mm to 8 mm. Any reduction in the
random noise in the image will improve the ability of a statistical technique to detect
true activations. Spatially smoothing each of the images improves the signal-to-noise
ratio (SNR), but will reduce the resolution in each image, and so a balance must be
found between improving the SNR and maintaining the resolution of the functional
image.

Recommended Setting We have found that in real-time experiments, better
results are obtained if no smoothing is applied. Therefore, we recommend users not
to use the smoothing at all. To turn off smoothing set

cfg.smoothFWHM = 0;



CHAPTER 5

BCI MODULE

After the data has been processed through the preprocessing pipeline, its transferred
to the BCI module. The BCI module is a separate computer on the network that has
the following responsibilities:

• BCI loop control

• Feature extraction

• Classification and

• Dynamic adaptive stimulus generation

We will now discuss each of these functionalities in detail.

5.1 BCI LOOP CONTROL

The BCI module performs one of the most central role in the entire pipeline as it
a controls the BCI Neurofeedback loop. To help facilitate in designing and writing

Development of a real-time functional magnetic resonance imaging pipeline.
Copyright c© 2012 University of Twente & Radboud University, Nijmegen
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Figure 5.1 Block diagram of the Classification Module with it’s various IO’s

MATLAB based real-time experiments, we have made the BrainStream toolbox
(www.brainstream.nu). BrainStream is a MATLAB-based software package for
real-time processing of continuous data streams. In a real-time experiment, all
processing steps and pipelines need to be executed at a specific time and in a specific
order. This is handled by markers in BrainStream, which are received in synchrony
with the data stream. Markers in themselves do not represent any kind of processing.
Meaning is given to them by the actions (processing steps or pipelines) associated with
the markers. Actions can be freely defined in order to accomplish some particular
task, for example presenting stimuli to participants, numerical data processing, or
controlling a data acquisition system. Incoming markers can initiate an unlimited
sequence of actions at an unlimited number of time points. Users can control the
insertion of markers and specify the actions associated with them.

With BrainStream almost any BCI experiment can be designed and controlled.

5.2 FEATURE EXTRACTION

Almost all BCI’s require some kind of feature extraction. Features are individual
measurable properties of the phenomena being observed. For fMRI, the easiest
feature to extract is the voxel time course averaged over a few TRs. Other features
such as t-statistics maps can be used as well [8]. BrainStream allows to write any
MATLAB code for doing any type of feature extraction, hence the possibilities are
endless.

5.3 CLASSIFICATION

Classification refers to an algorithmic procedure for assigning a given piece of input
data into one of a given number of categories. BrainStream can call any MATLAB-
based classification algorithms. In case the algorithms are written in C, then a
MATLAB wrapper can be written to make it callable from BrainStream. There are
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also some great MATLAB based toolboxes which can be used to classify neuroimag-
ing data in real-time. One example is the Donders Machine Learning Toolbox [1]
designed specifically to deal with high dimensional data such as fMRI. Because its a
MATLAB-based toolbox it can be integrated with BrainStream code effortlessly.

5.4 DYNAMIC ADAPTIVE STIMULUS GENERATION

Stimulus generation is one of the most crucial component of a real-time BCI experi-
ment. The neurofeedback in a real-time experiment needs to be constantly modified
based on the subject performance, i.e. stimulus should be dynamically adapted
based on the results of real-time data analysis. Using Psychtoolbox in conjunction
with StimBox (a toolbox in progress using Psychtoolbox for developing dynamically
updateable agenda-based stimulus presentation designs), any type of stimulus can
dynamically generated. Again everything could be coded in MATLAB which makes
using BrainStream such a great tool for real-time experiment control and execution.

Although BrainStream can be an invaluable tool in experiment control and execution,
if required, the entire experiment can also be run without using BrainStream. It all
depends on the prospective user’s personal preference as to which approach is adapted.
The pipeline itself is flexible enough to deal with almost any scenario.





CHAPTER 6

SYNCHRONIZATION MODULE

The synchronization module is Windows PC on the network which is connected
by a serial COM port to the scanner. The scanner sends the trigger to the serial
port every time a new scan is started. The TTL pulse received at the serial port is
converted to FieldTrip event and sent to the preprocessing computer where it triggers
the acquisition of a new volume into the raw data buffer.

Apart from that this module also receives a RESET pulse at its UDP port which resets
the internal counter of the Fieldtrip event generation tool serial_event.exe

Furthermore, this is the only PC which is connected to the scanner projector. If the
stimulus is not physically run on this computer then the VGA output from PC that
generates the stimulus should be somehow routed to the projector. For this purpose,
we use Extron VGA mixer which allow us to route either the VGA output from the
Synchronization module or the BCI module to the scanner projector. If the stimulus is
physically generated on the BCI module, then the VGA output from the BCI module
is sent to the projector scanner. If the stimulus is generated on the Synchronization
module then the VGA output of the synchronization module PC should be connected
to the scanner.
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Figure 6.1 Block diagram of the Synchronization Module with it’s various IO’s

6.1 SERIAL EVENT TOOL

This section describes the tool serial event, which is located in the directoryrealtime/
utilities/com2event, and whose purpose is to write events to a FieldTrip buffer
when a character is received on a serial port. The tool was developed specifically to
in order to forward TTL pulses from the scanner to the FieldTrip buffer.

The user has the option to either only react on specific characters, and to write events
with a fixed type and value, or to forward the received character as the value of the
event. The sample field of the event can be auto-incremented, and reset by sending
the string RESET to the UDP port (default = 1990) on which the tool listens. The
latter feature is used in the DCCN’s MRI lab to reset the sample counter when a
new sequence is started on the scanner host (which is then picked up by the fMRI
gui streamer tool).

The tool is started from the command line by typing

serial event [config-file]

If the config-file argument is not given, a default of serial event.conf is assumed.
Configuration file syntax
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The operation mode of the tool is controlled by given a configuration file in ini-file
syntax. A documented example follows below:

# Config file for Siemens 3t Scanner at Donders Institute

# Comment lines must start with a hash, empty lines are silently

# ignored

# buffer: FieldTrip buffer in the form hostname:port

# without quotes

buffer=lab-mri003:1972

# serial: Parameters of the serial port in the form

# portname:baudrate:databits:stopbits:parity

# all numbers must be >=0, parity may only be 0 or 1

serial=COM7:115200:8:1:0

# character: specify single character to react on, or

# comment this out to react to every incoming character

character=a

# type: Type of event as either an integer, double

# precision number, or string (e.g. "serial")

type="serial"

# value: Value of event, can be integer/double/string

# or @ to pass on serial character

value="click"

# sample: number to transmit with first pulse plus

# increment per pulse, e.g. 0+1 (sends 0,1,2,3,...)

sample=-5+1

# offset and duration: integer numbers

duration=0

offset=0

# UDP port for RESET messages

port=1990





CHAPTER 7

REAL-TIME fMRI PROTOCOL:

STEP-BY-STEP INSTRUCTIONS ON

HOW TO START A REAL-TIME fMRI

EXPERIMENT

Explained below is the procedure to start the real-time fMRI pipeline on the Siemens
Trio 3T scanner at the DCCN. It is imperative that these steps be followed in the exact
sequence as mentioned below. Failure to do so may result in unexpected outcomes.

7.1 STEP 1: PREPARING THE SCANNER

This step should be done on the scanner module.

• Register the subject in the scanner software. Then do all the necessary scanner
routines.

• Perform a haste localizer scan which will help in correctly positioning the
slices over the brain regions of interest. Refer to Figure 7.1 for information
about how to correctly position slice matrix over brain matter.

• Do the anatomical scans, if necessary.

Development of a real-time functional magnetic resonance imaging pipeline.
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• Do the scanner shimming and make it fully ready for initiating a functional
scan but DON’T yet start the functional scan.

(a) (b)

(c)
(d)

Figure 7.1 Correct slice positioning (a) Shows the brain image generated by the Haste
localizer scan. The task is to correctly position the slices for functional data acquisition. The
answer depends on the type of the experiment and the brain region of interest (b) Suppose it’s
a visual experiment involving the entire visual cortex which needs to be scanned. The visual
cortex is shown in blue color (c) After we have located brain region of interest, position the
slice matrix so that the region of interest is completely inside the slice matrix. If PACE is not
used, then due to the head motion, the first and last few slices will get corrupt over time. It is
therefore, imperative that the first three slices and last two slices do not cover the brain region
of interest. (d) In this figure you can see that the first three slice (from bottom) and last two
slice (top) do not cover the brain region of interest. So in case these slices do become corrupt
due to subject motion, it would not hurt classification performance (provided these first three
and last two slices are also masked in the preprocessing script, so that the voxels in these slices
are completely removed from the training and test data)
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7.2 STEP 2: STARTING THE BUFFERS

This step should be done on the preprocessing module.

1. Starting buffers on ‘lab-mri003’ computer
lab mri003 is a PC running Linux operating systems. Two FieldTrip buffers
need to be spawned on this computer, each in its own separate terminal window.
One buffer receives the Raw data stream from the scanner. The raw data is
preprocessed. The raw and preprocessed data streams can be saved for later
offline analysis.

(a) Start raw data buffer

i. Start the lab-mri003 computer. The computer will automatically
login as meduser

ii. Open terminal.

iii. To store data you must Login to the storage servers using your DCCN
Linux ID. Use the following command

ssh adnnia@localhost

Type in your credentials when asked for a username or password.
For our case
Username: adnnia
Password: **********

iv. cd /home/common/matlab/fieldtrip/realtime/general

v. ./recording.glnxa64 ~adnnia/rawdata/ 1972

vi. If the folder already exist then an error will be displayed. In that
case you should specify a new folder.

vii. If later on something goes wrong, and the previously collected data
needs to be deleted, then use this command

rm -rf ~adnnia/rawdata/

Warning: This will permanently delete your data so be careful while
using this command.

(b) Start preprocessed data buffer

i. Open another terminal on the same computer

ii. To store data you must Login again to the storage servers using your
DCCN Linux ID. Use the following command

ssh adnnia@localhost
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Type in your credentials when asked for a username or password.
For our case
Username: adnnia
Password: **********

iii. cd /home/common/matlab/fieldtrip/realtime/general

iv. ./recording.glnxa64 ~adnnia/procdata/ 1973

v. If later on something goes wrong, and the previously collected data
needs to be deleted, then use this command

rm -rf ~adnnia/procdata/

Warning: This will permanently delete your data so be careful while
using this command.

7.3 STEP 3: STARTING THE SERIAL EVENT TOOL

This step should be performed on the synchronization module.

Start pulse tool on Presentation machine ‘Presentation009’

(a) On Presentation009 machine, go to the following folder

D:\TTL_to_FieldTrip

(b) Open config file to check settings (of serial event tool).

(c) Sample = 0 + 1 (could be -5 + 1 to drop the first few dummy scans.
However, it’s better to not use those scans in the realignment of the
preprocessing pipeline. The latter is not implemented yet).

(d) Port should be 1990. This number should be the same in the GUI streamer.

(e) Click on .exe file (of serial event tool)

7.4 STEP 4: STARTING THE PREPROCESSING PIPELINE

This step should be done on the preprocessing module.

Start Matlab session on ‘lab mri003’ computer

(a) Open terminal

(b) Type matlab &
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(c) cd /home/common/matlab/fieldtrip/realtime/online_mri

(d) Type

cfg = [];

(e) Type type ft omri pipeline.m to check config settings

(f) Type ft omri pipeline(cfg)

(g) Press enter

7.5 STEP 5: MAKING THE REAL-TIME EXPORT CONNECTION

This step should be done on the scanner module.

Start GUI streamer on scanner host computer

(a) Press CTRL+ Esc

(b) Click on shortcut to GUI streamer.exe

(c) Port should be 1972 (FieldTrip raw buffer port) and the target should be
lab-mri003

(d) UDP target hostname = Presentation009

(e) UDP port should be 1990

(f) When connections are enabled, they turn green!

(g) If at any point the connection gets disconnected, press ‘CONNECT’ again
to reconnect.

7.6 STEP 6: STARTING THE fMRI SEQUENCE

This step should be done on the scanner module. With the help of the scanner
software send a ‘RESET’ pulse. Your MRI technician will probably know
how to do it. Once the ‘RESET’ pulse is sent, it should be visible GUI of the
serial event tool on Presentation009 machine. After that, the fMRI sequence
should be started. The output of the serial event tool should look the same as
shown in Figure 7.2.
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Figure 7.2 A view of the serial event after the fMRI sequence has been initiated. The
sequence is started by first sending a RESET pulse. Normal scanner pulse should come
afterwards this RESET message

7.7 STEP 7: STARTING THE BCI EXPERIMENT

This step should be done on the BCI module. It involves starting BrainStream
and the experiment files.

7.8 STEP 8: ENDING THE EXPERIMENT

• Close BrainStream

• Close both buffers by pressing CTRL+C.

• Close the serial event tool

• Close the MATLAB session on the preprocessing PC



CHAPTER 8

EVALUATION

To evaluate the performance of the real-time pipeline we ran it on a Laptop with
following specification:

• Intel(R) Core(TM)2Duo CPU T6600 @2.20GHz

• 4GB RAM

• Windows 7 64-bit operating system

• MATLAB R2012a

The following results were obtained by running the pipeline

• Time taken by brain extraction = 2s
This is a one time operation and is performed only in the beginning of the
experiment. The pipeline is able to catch up within the next 5TRs.

• Time taken by slice time correction (Linear interpolation) = 0.1s

• Time taken by motion correction = 0.28s
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• Time taken by online GLM (5 regressors) = 0.25s

• Time taken by spatial smoothing (8mm smoothing kernel) = 0.1s

Total pipeline processing delay = Time taken by slice time correction + Time taken
by motion correction + Time taken by online GLM + Time taken by spatial smoothing

Total pipeline processing delay = 0.1s + 0.28s + 0.25s +0.1s = 0.73s

8.1 CONCLUSION

The real-time fMRI pipeline developed is able to process each scan within a 1s time
window. This means that a TR as low as 1 second can be used in the real-time fMRI
experiments. Our evaluation was carried on a low end laptop computer. This shows
that our pipeline does not require any significant computational resources to do its
job and will work on any reasonably decent workstation.



CHAPTER 9

FUTURE IMPROVEMENTS

Although the pipeline is fully functional, there is much to be desired as to the ease of
using it. Here are the few suggestions for future improvements:

• The main workhorse of the pipeline (ft_omri_pipeline_nuiscane.m)

should be incorporated in a GUI where all the configuration settings could
be conveniently made before the start of the experiment. This will save a lot
time which is currently wasted in just make theses settings in cfg structure.
Furthermore, it will make the pipeline more attractive for the prospective users.

• Sinc interpolation for slice time correction should be further investigated to
determine its advantage over the linear interpolation. Furthermore, the Sinc
interpolation code needs optimization so as to reduce its execution time to
below 1s.

• Online GLM implementation should be improved such that regressors could
be added dynamically during the experiment execution. Currently, the number
of regressors are specified before the start of the experiment but they cannot be
changed during the experiment. Adding this feature will bring the pipeline on
par with Turbo BrainVoyager.
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• The online GLM should allow the possibility to select region of interests and
to confine the analysis to these region of interests.

• A GUI should also be designed for starting the two buffers on the preprocessing
PC. Currently starting these two buffers takes too much typing time before the
start of the experiment. A convenient GUI where each user can save and
retrieve there path setting, would save so much time.

• There should be an option to see the output of all the different stages of the
pipeline. Currently, the user can only see the final preprocessed scans. It would
be great if the output of each stage of the pipeline could be displayed as per
the user’s choice.
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