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ABSTRACT

EAL-time functional magnetic resonance (rtfMRI) imaging is a relatively

new technique to compute moment-to-moment changes in brain activa-

tions corresponding to a particular experimental manipulation. When cou-
pled with modern machine learning techniques, rtfMRI becomes a powerful tool
to read brain states in real time. Two separate experiments were conducted in
this study to answer two broad research goals.

The first experiment was conducted to investigate if visual perception and imag-
ination can be decode in real-time and if presenting neurofeedback of the decod-
ing results can help improved decoding/task performance. 25 elastic net logistic
regression classifiers were trained on fMRI responses for 100 random flickering
random patterns on a 5 x 5 grid in order to learn the stimulus to cortical acti-
vation mapping. The trained classifiers were then used to predict novel stimuli
perceived and imagined on the same 5 x 5 grid used in training. Each percep-
tion and imagination conditions were performed twice once with feedback and
once without it. The results of the study indicate that visual perception can be
decoded in real-time with an average accuracy of 55%. No significant decoding
accuracy was obtained for imagined stimuli. Furthermore, lower decoding ac-
curacies were obtained for conditions with feedback than the same conditions
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without feedback. However, the results of this experiment cannot be trusted as
some critical mistakes were made in its design and implementation including se-
lecting a wrong voxel size and using a very long visual cortex stimulation (12s)
during training. All this led to poor performance in the experiment. Further-
more, the results indicate that subject motivation and experiment duration have
a significant impact on task performance during the experiment.

The second experiment was conducted to find if one of the two competing stim-
ulus categories can be attended to and decoded in real-time and if presenting
feedback of the decoding can assist in improving task performance. The clas-
sifier was trained on pictures of famous faces and places. Subjects were then
shown a 50/50 hybrid of a picture of famous face and a famous place and asked
to attended to only one of them. The attended picture was then decoded in
real-time and the hybrid mix was updated at every TR such that if the prediction
was right, the non-target picture will fade out whereas the target picture will get
enhanced and vice versa. This is what happened in trials in feedback. In trials
without feedback, the hybrid mix remained at 50/50 % at all time during a trials.
The results of the study indicate that the attended category can be decoded with
very high accuracy (78.5%). Furthermore, the feedback of the decoded category
has no influence on the decoding accuracy. The feedback does however, induce
a snow ball effect where one classification leads to a stream of similar classifi-
cations in subsequent TRs in a trial. The results also indicate that the transition
period of the BOLD activity has a reliable structure that can be decoded with
above chance level accuracies, thereby decreasing the real-time fMRI delay by as
much as 6s.

Apart from these two experiments, the real-time fMRI architecture used for ex-
ecuting real-time fMRI experiments was developed and refined. Moreover, tools
for efficient analysis and visualization of fMRI and rtfMRI data were also devel-
oped.
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GLOSSARY

AAScout Stands for AutoAlign Scout. It is a sequence that compares the ac-
quired image to a reference atlas that allows automated placement of the
preceding sequences.

BrainStream BrainStream is a MATLAB-based software package for real-time
processing of continuous data streams.

BOLD BOLD or Blood Oxygenation Level Dependent functional magnetic res-
onance imaging is a form of magnetic resonance imaging of the brain that
registers blood flow to functioning areas of the brain.

BITSI stands for Bits to Serial Interface. It is used to send and receive trigger
and response signals in EEG, MEG, fMRI and Behavioral studies. It is a simple
building block that has a serial port and two eight bit ports: input and output.
The two ports can be used for responses (input) and stimulus triggers (out-
put). By using the serial port, the BITSI can be used platform independent,
i.e. it works on Windows, Linux and Mac OSX. In virtually any programming
language, it is possible to communicate with the serial port.

Real-time fMRI Decoding: Reading Minds Using Brain Imaging. Xvii
Copyright (¢) 2012 University of Twente & Radboud University, Nijmegen



xviii GLOSSARY

Channels A channel in fMRI refers to the time course data of one voxel. A
typical fMRI volume contains thousands of these channels.

EPI The EPI is a T2 sequence that is sensitive to the changes in oxy-hemoglobin
and therefore is used to generate brain activated areas.

FieldTrip FieldTrip is the MATLAB software toolbox for EEG, MEG and fMRI
analysis that is being developed at the Center for Cognitive Neuroimaging of
the Donders Institute for Brain, Cognition and Behavior together with collab-
orating institutes.

HRF HRF or Hemodynamic response function is the predicted BOLD response
to an instantaneous neuronal signal. Its shape and delay varies between indi-
viduals, across brain areas, with alertness etc. The sluggishness or inertia of
the HRF limits the temporal resolution of fMRI.

Matrix or Display Matrix The total number of pixels in the selected matrix,
which is described by the product of its phase and frequency axis. For example
if the readout and phase resolution of an fMRI is 64 and 48 respectively then
the display matrix would be 64 x 48.

fMRI fMRI or Functional magnetic resonance imaging, is a technique for mea-
suring brain activity by detecting the changes in blood oxygenation and flow
that occur in response to neural activity. When a brain area is more active
it consumes more oxygen and to meet this increased demand blood flow in-
creases to the active area. fMRI can be used to produce activation maps show-
ing which brain regions are involved in a particular mental process.

MPRAGE The MPRAGE is a 3D gradient echo sequence which acquires a high
resolution T1 sagittal structural data set. These images are used to define
functional slices to make sure they are covering the required anatomy. This
structural scan is also what is used to overlay activations on.

PACE PACE or Prospective Acquisition CorrEction is Siemens implementation of
online motion correction in which MRI gradients are changed whenever head
motion occurs such that the same spatial location in the brain are scanned no
matter where the head moves inside the scanner.

Longitudinal equilibrium When a scanner is first started the MR signal is
much higher than what it will be later on during the experiment. It takes
about at least 3s before a quasi stable MR signal level(equilibrium) is reached.
Because the scans collected till the longitudinal equilibrium has reached have
higher contrast then the scans that follow, therefore these few scans need to
discarded from analysis.

Preprocessing data buffer The preprocessed data buffer is a FieldTrip buffer
which receives data from raw data buffer, one sample at a time, and applies all
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the preprocessing steps to it. The preprocessed data is stored so that another
application down the line can access it whenever needed.

Phase resolution The two axes in an image are thus the "readout" axis and
the "phase-encode" axis. For a transaxial image in the traditional orientation
(z-axis along the main magnetic field), the z-gradient is used to select the
slice. The y-gradient may be used for "phase-encoding" and the x-gradient for
"frequency-encoding" or "readout" (or vice versa). The number of voxels in
the y direction, is known as the phase resolution.

Readout resolution The two axes in an image are thus the "readout” axis and
the "phase-encode" axis. For a transaxial image in the traditional orientation
(z-axis along the main magnetic field), the z-gradient is used to select the
slice. The y-gradient may be used for "phase-encoding" and the x-gradient for
"frequency-encoding" or "readout" (or vice versa). The number of voxels in
the x direction, is known as the readout resolution.

Raw data buffer Raw data buffer is a FieldTrip buffer that can receive raw
neurological data from a data acquisition client such EEG, MEG or fMRI. The
FieldTrip buffer is a network transparent TCP server that allows the acquisition
client to stream data to it per sample or in small blocks, while at the same time
previous data can be analyzed.

Real-time In streaming applications, an operation on a data sample is said to
be real-time if it is completed before the next sample becomes available.

Repetition time or TR TR is the time interval between two successive scans.
One scan is acquired in each TR. Each scan contains N slices as specified in
the acquisition protocol.

StimBox A toolbox (in development) which uses Psychtoolbox for developing
dynamically updateable agenda-based stimulus presentation designs.

Scan A scan refers to the one acquisition of the whole/ partial brain data. Each
scan contains N different slices as specified in the fMRI scanner setting.

Sample A sample in real-time fMRI refers to one volume of MRI brain data.

SPM SPM is a MATLAB software package implementing Statistical Parametric
Mapping for neuroimaging data. Statistical Parametric Mapping refers to the
construction and assessment of spatially extended statistical processes used to
test hypotheses about functional imaging data.

Slice A slice is one slab of brain voxels. Each slice contain R x P voxels, where
R is the readout resolution and P in the phase resolution. N slices of the brain
constitute one volume or scan.
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Volume A volume is the same as a Scan. Each volume contains N slices as
specified in the MRI sequence. In normal 2D-EPI sequences, each volume is
acquired slice by slice. In 3D Flash sequences, all the slices are acquired at
once.

Voxel Voxel or Volume Element is the basic measured entity in fMRI and it
represents the BOLD activity in a small 3D brain area.



CHAPTER 1

INTRODUCTION

tasies of many in recent decades. Over the years, these fantasies have also

trickled in the entertainment media as well. In the 1983 film Brainstorm,
Christopher Walken playing a scientist, was able to record movies of people’s
mental experiences, then play them back into the minds of other people. More
recently, in 2010, in the episode Black Hole of the popular TV series, House M. D.,
Dr. Gregory House was able to make a medical diagnosis of a patient suffering
from hallucinations. By using a fictitious fMRI-based gadget, the ‘Cognitive Pat-
tern Recognition’ device, the doctor was able to tap into the patient’s brain and
see the reconstructions of the hallucinogenic thoughts, as they were happening
in the patient’s brain. Although these might seem like a leap of imagination,
one step too many, the current state of the art is getting fairly close to making
these fictions a reality. In 2011, researchers at the Gallant Lab in UC, Berkeley,
by utilizing functional Magnetic Resonance Imaging (fMRI) and computer mod-
els, demonstrated the visual reconstructions of brain activity of human subjects
watching movie trailers; in other words, they could see what the people’s brains
were seeing. Hence mind reading is no longer a thing of science fiction.

READING human thoughts and intention has been one of the biggest fan-

Real-time fMRI Decoding: Reading Minds Using Brain Imaging. 1
Copyright (¢) 2012 University of Twente & Radboud University, Nijmegen



2 INTRODUCTION

Formally, mind reading refers to the ability to ascribe mental states based on
the information derived from neuroimaging [12]. Although there are many
neuroimagining techniques such as CT, PET, MEG, and fMRI, but none is more
suited to the mind reading problem than functional Magnetic Resonance Imagin-
ing (fMRI). With its high spatial resolution coupled with its ability to measure
moment-to-moment changes in the brain activity patters, fMRI is ideally suited
to gauge cognitive activities in the human brain.

Although mind reading is still in its infancy, the technology will make a pro-
found impact on the lives of many. It would permit the profoundly handicapped,
those paralyzed by conditions such as motor-neuron disease and cerebral palsy,
to communicate more easily. It might unlock the mental prison of patients suffer-
ing from diseases like Locked in Syndrome (LIS). For the able-bodied, it could al-
low workers to dictate documents silently to computers simply by thinking about
what they want to say. And most importantly, such a device might one day be
able to detect lies and help judicial systems to prosecute criminals and deliver
justice.

1.1 PROJECT MOTIVATION AND GOALS

Although decoding of mental activity has been demonstrated in many studies [83,
87,121,129], none of them were performed in real time. Data was collected from
the subjects in a scanner in long scanning sessions. After all the data had been
acquired, it would take several hours to build the models or train the classifiers,
and then these models/classifiers were used offline on a portion of the previ-
ously collected data to predict the perceived stimulus. If brain reading is to be
viable for any future application, then the decoding has to be done on-the-fly. In
other words, decoding the mental activity of a person should be done while these
mental states are being generated. Therefore, our first research goal is:

R1: To demonstrate an online decoding of perceived stimuli using real-time

fMRI

Furthermore, although past studies have demonstrated the decoding of perceived
stimuli, i.e., these studies tried to decode the brain activity elicited by pictures
[115], or letters [83,121], or movies [87]; the real-time decoding of mental
activity of purely imagined percepts has never been attempted. Decoding imagi-
nation in real time is the essence of mind reading. Future mind reading devices
would only be useful if they could read imagined percepts/intentions on-the-fly.
Therefore, this study will investigate if an imagined percept can be decoded in
real time using models that were previously trained on perceived stimuli. This
brings us to our second objective:

R2: To demonstrate online decoding of imagined stimuli using a classifier which
is trained only on perceived stimuli
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Because decoding can never be 100% perfect, therefore, it would be interesting
to see how performance of subjects is affected when the classifier prediction is
being fed back to them (using real-time fMRI neurofeedback) while they are
actively engaged in the mental task which is being decoded. So our third research
goal is:

R3: To investigate the influence of real-time fMRI neurofeedback on decoding
accuracy and hence subject’s task performance.

In our daily life, we are always faced with situations where we are flooded with
multiple sensory information but somehow we always manage to filter out the
pertinent information from the non-pertinent. So in the presence of two compet-
ing retinal inputs, we will investigate if it is possible to voluntarily attend to only
one of them and try to decode the attended stimuli in real time. So our fourth
research objective is:

R4: To investigate if the attended stimuli, in a scenario in which two competing
sensory inputs are presented, could be decoded in real time.

Because real-time fMRI is a relatively new technology, there is always a room for
improvement by way of newer and faster processing algorithms and better data
visualization and analysis tools. This brings us to our fifth and the last research
objective which is:

R5: To improve the existing real-time fMRI architecture and design new tools
for easy visualization and analysis of fMRI and real-time fMRI data.

1.2 STRUCTURE OF THE THESIS

Two separate experiments were conducted in this study to address the afore-
mentioned research goals. Therefore, the thesis has been structured into five
chapters. In chapter 2, a general introduction to functional magnetic resonance
imagining (fMRI) will be given. Then, we will describe real-time fMRI (rtfMRI)
along with the various preprocessing steps involved in preparing raw fMRI data
so that it is ready to be decoded. In the end we will briefly describe decoding and
the Elastic Net Logistic Regression classifier that will be used in both experiments
to decode the fMRI data.

Chapter 3 addresses research goals R1, R2, and R3 and describes the first experi-
ment which aims to decode visual perception and visual imagination in real time
and also investigates the effect of real-time fMRI neurofeedback.

Chapter 4 tackles the research objectives R3 and R4 and describes the second
experiment which aims to decode the attended stimulus when two competing
stimuli are presented. In this experiment as well, the influence of real-time neu-
rofeedback on subject and decoding performance is investigated.
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Chapter 5 focuses on research goal R5 and briefly describes the distributed real-
time fMRI pipeline which was used to execute the first experiment. Then the
integrated real-time fMRI pipeline is described, the development of which was
prompted by the inherent design flaws in the distributed real-time fMRI pipeline.
This new improved pipeline was used to run the second experiment. Further-
more, we will describe a new tool Analyze4D, a software venture that emerged
as a result of this project and which is now a bonus deliverable for the BrainGain
Work Package 6. The tool is designed specifically for easy and intuitive visualiza-
tion and analysis of fMRI and rtfMRI data. In closing, we will describe the impact
that the hardware and software developed in this project will have on the fMRI
and rtfMRI research community.

Chapter 6 summarizes the important findings of this project and proposes ideas
for future work.



CHAPTER 2

BACKGROUND

some common terminologies used in fMRI literature. Then we will describe

real-time fMRI starting with literature review of all pertinent studies. We will
then give a detailed explanation of real-time fMRI implementation at the Donders
Institute which was used to conduct both experiments (Chapter 3 and 4) in this
thesis. Then we will give a brief overview of fMRI decoding starting with a
literature review. Finally, we will describe classification and explain Elastic Net
Logistic Regression classifier because this classifier will be used in both upcoming
experiments.

IN this chapter, we will first briefly introduce conventional fMRI along with

2.1 FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI)

Magnetic resonance imaging (MRI) is a non-invasive technique that uses strong
magnetic fields to form high resolution images of brain and body. Functional
magnetic resonance imaging (fMRI) is an extension of MRI to measure quick
and tiny metabolic changes that take place in the active brain. More specifically,

Real-time fMRI Decoding: Reading Minds Using Brain Imaging. 5
Copyright (¢) 2012 University of Twente & Radboud University, Nijmegen
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fMRI signals reflect differences in the paramagnetic properties of oxygenated
and deoxygenated blood as a consequence of activation [50]. Thus, fMRI stud-
ies are capable of providing not only an anatomical view of the brain, but a
moment-to-moment recording of actual brain activity based on blood-oxygen-
level-dependent (BOLD) signal changes related to neuronal activity across the
entire brain [90]. The ability of fMRI to track changes in the neuronal activity
has proved very useful in localizing task-related brain activations and hence in
the functional mapping of brain.

2.1.1 Hemodynamic response function (HRF)

The time course of the BOLD signal
as it evolves over time in response
to an impulse is called the hemody-
namic response function (HRF). HRF
has three phases [47], as plotted in
Figure 2.1:

<+— Peak

Spectral density

0 . . —
0 0.05 0.1 0.15 0.2 0.25

1. Initial dip: As neurons con- Frequency (Hz)

sume oxygen in response to the stim-
ulus, there is a small rise in the
amount of deoxyhaemoglobin, which
results in a reduction of the BOLD
signal. This increase in deoxy-
haemoglobin is because the -capil-
laries supplying blood to the brain

Signal change (%)

Undershoot

/e Initial dip

0 8 16 24 32
PST (s)

cannot instantaneously fulfill the in-

creased demand for the oxygenated
blood.

Figure 2.1 | Hemodynamic response function
(HRF). The BOLD response as it evolves over time
in response to an impulse at time t = Os. The signal

reaches its peak around 5 to 6 s. The initial dip is
not observable on 1.5T or lower strength scanners.

2. Overcompensation: In response picture adapted from [93]

to the increased consumption of oxy-

gen, the blood flow to the region in-

creases. The increase in blood flow is greater than the increased consumption,
which results in significant increase in the BOLD signal. This is the component
that is normally measured in fMRI.

3. Undershoot: Finally, the blood flow and oxygen consumption dips before
returning to their original levels. This may reflect a relaxation of the venous sys-
tem, causing a temporary increase in deoxyhaemoglobin again.

The hemodynamic response function is relatively stable across sessions for the
same participant in the same region, but is more variable across different brain
regions for the same individual and more variable among individuals [5].
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As can be seen on the HRF curve in Figure 2.1, the BOLD signal lags behind the
stimulus by about 5 to 6 seconds. This limits the temporal resolution of fMRI
and has important implications for timing of the real-time fMRI neurofeedback.
Furthermore, after the HRF peaks, it takes about 6 to 12 seconds for it to decay
back to baseline level. This effects how quickly a new trial can be started after
the previous one and hence directly impacts the duration of a real-time fMRI
experiment.

2.1.2 fMRI terminologies and procedure

In a typical fMRI experiment, a partic-
ipant performs a cognitive task inside
a scanner while being scanned. Dur-
ing scanning, the scanner takes snap-
shots of brain activity every few sec-
onds. The captured image is called
a Scan or Volume. A scan contains a
number of slices and each slice con-
tains a couple of thousands of vox-
els. A voxel is a basic measuring unit
of fMRI and its value represents the
BOLD activity in the small 3D brain
region it encompasses, as shown in
Figure 2.2.

The entire volume cannot be acquired Figure 2.2 | Voxels, Slices and Volume.  The

instantaneously. Instead, the volume cube h1ghhghﬁed in green, magenta and bl}le is

K . R . a Voxel and it’s value represents the magnitude

1S acqulred one slice at a time. Once BOLD signal of the 3D brain region that it encom-

all the slices have been acquired, the passes. The slab, highlighted in the red, is called

volume gets constructed. The time re- a Slice. A typical slice contains thousands of vox-

quired to acquire all the slices in a els. A number these slices when c.ombmed make
X o . up a Volume or Scan. The volume is shown by the

volume is called the Repetition Time orange grid.

(TR). Therefore, the TR depends on

the number of slices acquired. Fewer

number of slices will take less time to acquire but at the cost of reduced brain

coverage.

Once the experiment is over, the scan data can be retrieved from the scanner
and then analyzed. The crucial point to note here is that the scan data cannot
be retrieved during the experiment while the subject is being scanned. Hence
real-time analysis of data in traditional fMRI is out of question.
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2.2 REAL-TIME FUNCTIONAL MAGNETIC RESONANCE IMAGING
(FtMRI)

Unlike conventional fMRI that only allows analysis of images long after the sub-
ject has left the MR scanner, real-time fMRI allows data analysis simultaneously
with image acquisition. Therefore, real-time fMRI provides additional informa-
tion not readily available from conventional fMRI. For instance, activation maps
obtained by the conventional approach are static and represent the sum of the
effects agreeing with the assumed hypothesis for the entire session. On the other
hand, real-time fMRI activation maps are dynamic and can reflect the temporal
changes of the cognitive or motor processes occurring during the experiment,
that may be manipulated by attention, optimization of strategy, or learning for
task performance [9]. This enables the experimenter to use the available stream-
ing data to derive a feedback signal that can be used for any neurofeedback
application.

This ability of real-time fMRI systems to derive a feedback signal from brain im-
ages makes it ideal for neurofeedback training and fMRI-based brain computer
interfaces. For instance, earlier this year (2012), researchers at Maastricht Uni-
versity used real-time fMRI to design an online speller suitable for patients with
locked-in syndrome (LIS) [117]. The speller was reported to perform at 82%,
which is more than sufficient for communication purposes given that spelling
accuracies of 70% are usually regarded as the lower limit for spelling with an
assistant device [108]. In a related study, researchers were able to move a com-
puter cursor with five degree of freedom using activations emanating from hand
and foot movements and utilizing it for selecting letters on an on-screen key-
board [24]. Another study demonstrated the use of real-time fMRI in controlling
a dynamical system in which subjects were able to balance an inverse pendulum
using brain activation from actual hand movements [25]. In a similar study, re-
searchers used of real-time fMRI and activations from motor imagery of hands to
control 2-dimensional movements of a robotic arm [68].

Real-time fMRI has also been experimented with for treatment of various medical
ailments. Studies have demonstrated the use of real-time fMRI for self regula-
tion of brain regions involved in Parkinson’s disease [119], depression [70], con-
tamination anxiety [40], chronic tinnitus [39], pain [18], and substance abuse
[42,69]. Real-time fMRI is also being used in neuropharmacological studies
on animals to observe the dynamic signal changes to an acute drug adminis-
tration [73]. Furthermore, real-time fMRI has been in presurgical planning to
isolate lesions from important functional regions. For example, in patients with
tumours in or near the motor cortex reliable intra-operative identification of the
precentral gyrus can be difficult due to anatomical dislocation. In such cases,
real-time fMRI can be very effective in guiding the neurosurgeon safely through
minimally invasive craniotomies to tumours in eloquent areas without setting
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lesions to functional areas [28,107]. Similarly, real-time fMRI is shown to be
effective in presurgical evaluation of intractable paediatric epilepsy [54].

The studies mentioned above have shown how real-time fMRI can be used in
plethora of different applications. We will now describe how real-time fMRI, as
implemented the Donders Institute, works. This general setup will be used for
all experiments described in this report.

2.2.1 Real-time data acquisition and streaming

On SIEMENS scanners, as soon as the last slice of a volume is acquired, the raw
pixel data of the acquired volume gets written to a folder in the drive of the
scanner console. A custom designed software constantly polls this folder for any
new files and as soon as a new file is detected, its contents are read and streamed
over the ethernet along with the information about the fMRI protocol which was
used to acquire the scan. The protocol information helps the remote computer
which receives the streaming data to reconstruct the volume.

2.2.2 Preprocessing

The raw fMRI data received from Exposed Last
the scanner needs to undergo certain
preprocessing steps that improve the
quality of the acquired scans. These
steps include:

2.2.2.1 Slice time correction In
fMRI, a brain volume is acquired one
slice at a time and the last slice is ac-
quired almost one TR! later then the Exposed First

first slice. This results in different vox-

els in the same brain volume being Figure 2.3 | Slit-scan photography analogue to

sampled at different time points on the shcc.e timing prf)blem. In slit-scan photog-
raphy, different portions of a scene are captured

the Hemodynamic Response Function at different instants of time resulting in distorted
(HRF) curve. The problem is illus- representation of the moving objects. The same

trated in Figure 2.3. Slice time cor- happzns ilé.?;’[m as each Slicefs ina ngume is a;f
. . L quire at different instance of time. otograp Ly

rection solv.es this problem by shifting By: Henri Lartigue,

the voxel time courses to align them

with sample time of the first slice.

TActually it is slightly less than one TR. To be more specific, the last slice is acquired [(nSlices-
1)/(nSlices)]*TR after the first slice.
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This changes the data in a way as if the whole volume would have been mea-
sured at the same moment in time as the first slice. Slice time correction uses
interpolation (Linear or Sinc) to align all the voxel sample point to the same
location on the HRF curve.

2.2.2.2 Motion correction Head motion is a major problem during fMRI
data acquisition. No matter how much care is taken to fixate the head, some
head motion is bound to occur. Any motion causes the brain voxels to shift. For
example if a voxel is in slice 22, then after motion this voxel may shift into the
adjacent slice (slice 21 or 23).

Head motion is a huge problem in fMRI. For example, in scenarios where decod-
ing algorithms are applied to voxel time courses, if voxels continuously shift their
position, then it becomes difficult for decoding algorithms to learn any meaning-
ful pattern of activity because the voxels would not represent activity from one
location of the brain but would represent activity from many different regions of
the brain.

There are two approaches for correcting motion:

Retrospective motion correction Retrospective motion correction tries to correct
for motion after it has happened. This kind of motion correction has its lim-
itations because it cannot correct for large movements. It applies rigid body
transformation to align all the brain volumes to a reference volume. In our
implementation of retrospective motion correction, this reference volume
is the very first scan acquired. It uses interpolation to move all the voxels
in all subsequent volumes to their position in the reference volume/scan.

Prospective motion correction Retrospective motion correction cannot correct
for any motion larger than the slice thickness. Therefore, prospective mo-
tion correction or correcting the motion as it occurs, was introduced by
Siemens. PACE or Prospective Acquisition CorrEction [74,120], is a tech-
nique in which the MRI gradients are adjusted if head motion occurs, such
that the slice position changes with shifts in the head position. Thus the
slices always remain glued to the same spatial location in the brain no
matter where and by how much? the brain moves in the scanner. This is
depicted in Figure 2.4.

2.2.2.3 PACE series selection Whenever motion is detected, PACE recal-
culates the new gradients and then uses these new gradients for the next scan.
Thus, there is a gap of two TRs between the detection of motion and its correc-
tion. Any motion that does occur in this two TR interval, cannot be corrected by
PACE. This is removed by retrospective motion correction which Siemens calls

2There is a limit how much motion PACE can correct. On Siemens MAGNETOM Trio 3T scanner, this
limit is 20 mm.
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(a) Before head motion (b) After head motion without PACE (c) After head motion with PACE

Figure 2.4 | Prospective Acquisition CorrEction (PACE). (a) Shows the slice positioning before any
motion has occurred. (b) Shows what happens if motion occurs without any PACE correction. The
slices remain in their original position but as the head has moved, therefore, the slices are sampling
different region of the brain than originally intended. (c¢) With PACE, the MRI gradients are adjusted
in real-time such that the slices remain glued to the same spatial locations in the brain no matter
where the head moves.

MoCo. Hence if the PACE sequence is used, it not only corrects the images
prospectively but also retrospectively. Therefore, the pace sequence spits out
two series of images:

o the first series is just PACE (prospectively) corrected

o the second series is both PACE (prospectively) and MoCO (retrospectively)
corrected.

In our experiments, we will use the second series as it has the least amount of
residual motion.

2.2.2.4 Boundary slice Masking Retrospective motion correction always
corrupts slices at the boundary of each volume because no interpolation data
is available for these boundary slices. How many boundary slices get corrupt
depends on the amount of motion incurred during the experiment. If PACE is
enabled, a very small motion occurs. For instance, in a 70 minutes long experi-
ment, on average only half of the first and last slice gets damaged due to motion.
Hence by masking the entire first and last slice (as shown in Figure 2.5), it can
be ensured that none of the damaged voxels get used in training and test ses-
sions. Masking removes these bad voxels by setting the voxels in each of these
bad slices to zero.

2.2.2.5 Nuisance regressors removal This step is applied to remove scan-
ner drifts, offsets, and motion related activations. A Recursive Least Square Gen-
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Figure 2.5 | Boundary slice masking. (a) The figure shows all the slices in the very first scans
of the experiment (b) As time goes on and the subject moves, the first and the last slice start to get
corrupt (shown by the arrows) as no interpolation data is available at these boundary slices to correct
for the motion that has occurred. The more the motion, the more the damaged areas spreads. The
picture was taken 70 minutes into the fMRI run and is the last scan (2095'") of a typical experiment
with a PACE MR sequence. (c) Boundary slice masking masks out slice 1 and 28 so that the voxels
corresponding to these slices are not used in training and testing phase of the experiment.

eral Linear Model (RLSGLM) is used for this purpose [8]. RLSGLM is similar to
traditional GLM, the only difference being that RLSGLM updates the model every
TR rather than recalculating the full model at every TR which could be very time
consuming and may compromise the real-time operation of the pipeline.

2.2.2.6 Grey matter masking The brain contains three distinct tissue types
i.e. grey matter, white matter, and cerebral spinal fluid (CSF). Only the voxels in
the grey matter respond to the experimental manipulation while the rest of the
voxels show only random activity patterns. Grey matter masking removes these
white matter and CSF voxels.

2.2.2.7 Spatial smoothing In spatial smoothing, neighboring voxel values
are averaged which essentially low pass filters the data, thereby removing high
frequency fluctuations from the data. As a result, sharpness of the image is
reduced which is why this process is called smoothing. In real-time experiments,
better results are obtained if no smoothing is applied.
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2.2.3 Real-fMRI design constraints

In conventional fMRI, first all scans for an experiment are acquired first and then
these scans are preprocessed and analyzed in batch and the whole process may
take several hours after the data has been acquired (as depicted in Figure 2.7).
On the other hand, in real-time fMRI every scan is processed within a TR of being
acquired (see Figure 2.6). In others word, each scans is completely dealt with
before the next one becomes available and all this happens while the experiment
is up and running. If for any reasons a scan takes more than a TR to be completely
processed, then a lag starts to build up in the whole pipeline which jeopardizes
the real-time operation of the pipeline.

IMAGE ACQUISITION

REAL-TIME IMAGE EXPORT
PREPROCESSING

FEATURE EXTRACTION
CLASSIFICATION
GENERATE FEEDBACK

l«— TR —

Figure 2.6 | Timeline of a real-time fMRI experiment. Every scan is completely processed within
one TR of being acquired and hence a new feedback update is available every TR.

TR> HOURS OR SOMETIMES DAYS ——»
IMAGE ACQUISITION [H.\'AI ’ SCAN 2 | SCAN 3| SCAN 4 ‘Y Y}

IMAGE EXPORT
PREPROCESSING
FEATURE EXTRACTION
CLASSIFICATION

Figure 2.7 | Timeline of a conventional (non real-time) fMRI experiment. All scans acquired
during the experiment are processed after the experiment is over. The process may take hours or
sometimes even days. Note that there is no feedback in these experiments because by the time
feedback gets calculated, the experiment is already over and test subject is already out of the scanner.
This is what differentiates real-time fMRI from conventional fMRI.

2.3 DECODING

Once the fMRI data has been preprocessed, it is ready to be decoded. Decoding
is at the heart of mind reading and involves figuring out on an abstract level as
to what is happening in the brain. Many studies have used machine learning
techniques to learn what the fMRI time series represents. A study by Naselaris et
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al. [86] demonstrated a Bayesian decoder that used fMRI signals from early and
anterior visual areas to reconstruct complex natural images [131]. In a related
study, researchers reconstructed visual images by combining local image bases
of multiple scales, whose contrasts were independently decoded from fMRI ac-
tivity by automatically selecting relevant voxels and exploiting their correlated
patterns [83]. Binary-contrast, 10 x 10-patch images (2(100) possible states)
were accurately reconstructed without any image prior on a single trial or vol-
ume basis by measuring brain activity only for several hundred random images.
Another study [91] used linear support vector machine to decode each syllable
from human fMRI activity suggesting the possibility of using non-invasively mea-
sured brain activity to read the intended speech of patients disabled in speech
motor control. A recent study by Mitchell et al. [94] used a variety of classi-
fier (Gaussian Naive Bayes, Support Vector Machine and k Nearest Neighbors) to
decode (1) whether the human subject was looking at a picture or a sentence,
(2) whether the subject was reading an ambiguous or non-ambiguous sentence,
and (3) whether the word the subject was viewing was a word describing food,
people, buildings, etc. In an another study, Rodriguez et al. demonstrated that
multivoxel pattern analysis of fMRI can be used to decode place-related infor-
mation in spatial navigation [105]. All these studies have shown that machine
learning techniques can be an invaluable tool to decode cognitive states.

Broadly speaking, Decoding techniques for fMRI can be divided into three cate-
gories:

1. Classification
2. Reconstruction
3. Identification

We will focus here only on the classification technique since it will be used that
in all the experiments in this study.

In classification, a pattern of activity across many voxels is used to determine
the discrete class from which the stimulus was drawn [16, 20,43, 44,52]. The
most commonly used computational technique is the linear classifier [13,22, 30,
45,82,92,95]. The linear classifier is an algorithm that uses patterns of activity
across an array of voxels to discriminate between different levels of stimulus,
experimental, or task variables. Because classifiers exploit systematic differences
in voxel selectivity within a region of interest (ROI), therefore they can detect
information that would be missed by conventional analyses involving spatial av-
eraging [65].

A linear classifier makes a classification decision based on the value of a linear
combination of the feature values. In this study, the preprocessed time courses of
the voxels would be used as features. If X represents vector of all features, then
the output of the linear classifier can be written as:
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y=f@R)=f( Y wx,
k

where W is a real vector of weights and f is a function that converts the dot
product of the two vectors into the desired output. In other words, W is a linear
functional mapping of ¥ onto R. The weight vector w is learned from a set of
labeled training examples. If f is a simple function, then it will map all values
above a certain threshold to the first class and all other values to the second class.
A more complex f will give the probability that an item belongs to a certain class.

Because a real-time mind reading experiment needs a classifier that can train fast
and predict fast as well, a linear classifier is well suited for it as it is often the
fastest classifier, especially when ¥ is sparse. Linear classifiers often work very
well when the number of dimensions in ¥ is large, as in the case of fMRI where a
typical voxel time series is thousands of samples long. In such cases, the classifier
should be well-regularized to avoid overfitting.

There are two broad classes of methods for determining the parameters of a
linear classifier w.

1. Discriminative models: A discriminative algorithm does not care about
how the data was generated, it simply categorizes a given signal. Logistic
Regression, Perceptron and Support Vector Machines (SVM) are some of the
classifiers in this category.

2. Generative models: A generative algorithm models how the data was
generated in order to categorize a signal. It asks the question: based on
generation assumptions, which category is most likely to generate this sig-
nal? Linear Discriminant Analysis (LDA) and Naive Bayes classifier are some
of the classifiers in this category.

Imagine the task is to classify a speech to a language. It can be done either by:

1. Learning each language and then classifying it using the knowledge you
just gained or

2. Determining the difference in the linguistic models without learning the
languages and then classifying the speech

The first approach is generative and the second one is the discriminative. In this
study, a derivative of logistic regression classifier called the Elastic Net Logistic
Regression classifier will be used.
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2.3.1 Elastic Net Logistic Regression

Regression is a technique which tries to estimate the value of a target variable
based on a set of known values corresponding to one or more predictor variables
and it does so by finding a target function f that best matches the target variable
given the input data. An error function can then be used to assess how good or
otherwise the fit is. One commonly used error function is the sum of squared
error.

Sum Squared Error (SSE) = Z(yp —f(xp))2
p

where y, corresponds to the target (or response) variable of the p'" observa-
tion x,. The best matching target function is the one that minimizes this error
function.

Linear regression is a specific form of regression which learns a linear target func-
tion f that best matches the target variable given the set of predictor variables.

Given p predictors xy, Xy, ....X,, the response y is predicted by
5 = Bo+x1P1 + Xofio + e +x,, (2.1)

Logistic regression is another form of regression used the modeling of dichoto-
mous categorical outcomes (e.g., dead vs. alive, cancer vs. none,E). Logistic and
linear regression are both based on many of the same assumptions and theory.
While convenient in many ways this presents a minor problem with regard to the
outcome. Since the outcome is dichotomous, predicting unit change has little
or no meaning. As an alternative to modeling the value of the outcome, logis-
tic regression focuses instead upon the relative probability (odds) of obtaining a
given result category. As it turns out the natural logarithm of the odds is linear
across most of its range, allowing us to continue using many of the methods de-
veloped for linear models. The result of this type of regression can be expressed
as follows:

p - - - -
ln m =[’30+X1[51 +x2[32+ ....... +Xpﬁp (22)
Where P represents the probability of an event (e.g., death, cancer, ..).
A model-fitting procedure produces the vector of coefficients § = (fy, By, ..., ﬁp).

The criteria for evaluating the quality of a model will depend on the particular
problem at hand but typically the following two aspects [134] are important:

e Accuracy of prediction on future data

o Interpretation of the model
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OLS often performs poorly in prediction on future data samples and also yield
models that hard to interpret. Therefore, penalizing approaches were introduced
to counter these two problems. Depending on the type of penalty applied, there
can be three types of regression:

1. Ridge regression(L2 penalty)
2. Lasso regression (L1 penalty)
3. Elastic net regression (Elastic net penalty)

The ridge regression minimizes SSE by putting a bound on the L2 norm of the
coefficients. As a continuous shrinkage method, ridge regression achieves its
better prediction performance through a bias-variance trade-off. One limitation
of ridge regression is that it cannot produce a parsimonious model because it al-
ways keeps all the predictors in the model [134]. Therefore, the Lasso regression
[123] was introduced. The Lasso is a penalized least squares method imposing
an L1 penalty on the regression coefficients. Due to the nature of L1 penalty, the
lasso regression does both continuous shrinkage and automatic variable selection
simultaneously which comes in very handy in situations where sparse representa-
tion is required. However, the lasso has its limitation too as pointed out in [134].
For example, in fMRI where the number of scans is far less than the number of
voxels (in other words p >> n), the lasso selects at most n variables before it sat-
urates, because of the nature of the convex optimization problem. Furthermore,
if there is a group of variables with very high pairwise correlations, then the
lasso tends to select only one variable from the group and does not care which
one is selected. To counter theses problems the elastic net penalty was intro-
duced [134]. Similar to the lasso, the elastic net penalty P simultaneously does
automatic variable selection and continuous shrinkage, but is also able to select
groups of correlated variables. This makes the elastic net regression a perfect
choice for fMRI decoding. The entire family of P, creates a useful compromise
between ridge and lasso regression [32]. The elastic net regression solves the
following problem:

. 1 &
[3 = argﬁe]RPH |:E ;(}’1 - xiTﬁ)Z + A'Pa(ﬁl’ ﬁp):| (23)
where
p 1 )
Po=, | 5(1-a)f? +alf) 2.4)
i=1

If a = 1, then the regression is lasso and if @ = 0 the the regression is ridge. Any
value of a between 0 and 1 yields an elastic net regression.

The classifier in this study was an Elastic Net Logistic Regression classifier as
implemented in the Donders Machine Learning Toolbox (DMLT). The mixing pa-
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rameter a parameter was fixed to 0.99. For the regularization parameter A,
the whole regularization path was calculated with maximum number of allowed
iterations set to 100. Optimal setting of A was then computed using nested cross-
validation on 75% of the training data.



CHAPTER 3

REAL-TIME DECODING OF VISUAL
PERCEPTION AND IMAGERY

study. The experiment tries to investigate if visual perception and imag-

ination can be decoded in real-time and if presenting neurofeedback of
decoded patterns has any influence on task performance of subject. The chapter
begins with a literature review of visual perception and imagery studies. The ex-
periment is then described in the methods section along with a description of the
statistical analysis carried out on the data offline. We then discuss the important
findings of this experiment including the design mistakes that were made during
this experiment which will be used to refine the implementation of the second
experiment described in Chapter 4).

THIS chapter describes the first of the two experiments conducted during this

3.1 INTRODUCTION

Visual perception is the ability to interpret information about the surroundings
from the effects of visible light reaching eye allowing an individual to assimilate
information from the environment. When light falls onto retina, the rod and cone
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receptors transform it into electrical signals which travel via the optic nerve and
optic chiasm to the Lateral Geniculate Nucleus (LGN). From there the signals
travel to the occipital lobe, at the back of the brain. This is called the visual
cortex [36]. In primates, nearly all visual information enters the cortex via area
V1 which is also known as the primary visual cortex, Brodmann area 17 or striate
cortex due to its stripy appearance. From V1, the information travels to the
Extrastriate cortex which includes V2,V3,V4, and V5/MT.

The primary visual cortex is the start-
ing point of visual processing in the
cortex. From the visual cortex, sig-
nals follow two different pathways,
the ventral pathway to the temporal
lobe and the dorsal pathway to the
parietal lobe of the brain, as shown
in Figure 3.1.The ventral and dorsal
pathways each have been attributed
with a different function. The ventral
pathway is said to be involved in pro-
cessing of object identity (the “what"
pathway) and the dorsal stream is — 3;:3"";“;’”;'?;’::::’::
involved in the processing of loca- Bl occptaiose

tion and spatial features (the “where"
pathway) [128].

Figure 3.1 | Dorsal and ventral pathways in the
brain.

Evidence for this dichotomy stems
from decades of research into mon-
key and human brain. Tasks involving
spatial processing, such as judging the spatial layout of a scene, activate regions
in the dorsal pathway. Damage in this part of the brain in monkeys or human pa-
tients was found to lead to difficulties in spatial judgements [81]. In the ventral
pathway, many regions have been discovered that respond optimally to certain
object categories. For example, seeing faces extensively activates a region in the
fusiform gyrus (part of the ventral pathway), while this region responds less op-
timally to other object categories [53,99]. Other regions in the ventral pathway
have also been identified to be optimally responsive to other object categories
such as places or tools. Whether this suggests a modular organization of ventral
temporal cortex or whether objects are represented in a continuous manner, is
still under debate [1].

Although we now know which regions respond to what kind of stimuli, it is
even more important to know how this information is internally encoded in
brain. Since the 1970s, researchers have been trying to uncover the mechan-
ics of how visual stimuli are represented in the visual cortex. One of the major
breakthrough in this field was the finding by Tootell et al. [125] that the vi-
sual cortex is retinotopically organized. A geometric pattern of flashing lights
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was shown to a monkey after it was injected with a radioactive sugar, which is
taken up into brain cells in proportion to their level of activity. This stains the
brain cell which are active. The animal was trained to stare at the stimulus and
was then sacrificed so that its brain could be examined. The occipital cortex
of the monkey showed dark bands revealing the neurons that were most acti-
vated while the animal viewed the pattern. A pattern of activation correspond-
ing to the geometric structure of the stimulus can be seen clearly in Figure 3.2.
Tootell’s experiment is a remarkable
and beautiful demonstration of how  ««
the V1 area of the brain is retinotopi- %@ .,
cally organized. That is, this part of i
the brain is organized similarly to how  r¥2-3---
the light hits our retinas. The fact that ;.. ;
the stimulus is retinotopically mapped ¢ s 3
on the visual cortex has opened new 3% o Ll e i
ways of decoding perceived stimu-
lus. For example, Thirion et al. [121] Figure 3.2 | Retinotopic organization of visual
argued that if a controlled stimulus cortex in a monkey The stimulus is shown on the
(e.g. a flashing checkerboard) pro- left and the brain in shown on the right. The brain
duces a known pattern of activation jn  Stins have the same structures as the stimuli, in-
. . dicating that the visual cortex is retinotopically or-
the visual cortex, then the stimulus- 4.6 picture adapted from [125]
to-activation chain can be identified
and inverted, leading to activation-to-
stimulus inference. The inverse problem consisted of predicting the spatial lay-
out of an activation pattern (stimulus) given a functional activation image of
the visual cortex, a technique termed as inverse retinotopy. It comprised of first
estimating a forward model using the receptive field model, and then inverting
the model in a Bayesian framework. Thirion also compared the performance
of inverse retinotopy to the classical linear SVM approach. The results of the
study revealed that the supervised learning technique performed better than the
inverse retinotopy technique, implicating that there is sizeable amount of dis-
criminative information in fMRI data that can be learned by machine learning
techniques.

One of the most notable aspects of the work by Thirion is that they reported
good decoding performance not only for perceived stimuli but also for imagined
stimuli. Visual mental imagery or seeing through the mind’s eye can be defined
as the manipulation of visual information that comes not from perception but
from memory [58]. Imagery helps provide meaning to experience and under-
standing to knowledge; it is a fundamental facility through which people make
sense of the world around them. For example, if asked which is greener, a pea
or a cucumber, most people would imagine seeing a pea and cucumber before
answering the question. Similarly, when deciding if the new table that one is
about to buy would pass through the narrow door of the room back home, one
would probably project the table onto the mental image of the door to figure out
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the answer. A mental image occurs when a representation of the type created
during the initial phases of perception is present but the stimulus is not actually
being perceived; such representations preserve the perceptible properties of the
stimulus and ultimately give rise to the subjective experience of perception [63].

Many parallels can be drawn between visual perception and visual imagery be-
cause a similar organization of object and spatial information into two processing
streams has been found during visual mental imagery. Studies have indicated,
e.g., that psychophysically, a visual mental representation can be manipulated in
a similar fashion as a visual percept [113] and that patients with imagery deficits
often have accompanying deficits in the perceptual domain [27,126]. Moreovet,
neuroimaging studies in healthy individuals showed that the distributed cortical
networks, active during specific mental imagery tasks, are also activated during
corresponding perceptual processes [33, 49, 62,78, 88]. Parts of the organiza-
tional structure of mental imagery, such as the division in ‘what’ and ‘where’
processing pathways, are very similar to that of perception while other aspects
such as the involvement of the early visual cortex, are more disputed. The first
study reporting primary visual cortex (V1) activation during a mental imagery
task dates back to 1993 [59]. Since then conflicting results have been found.
Several studies found no evidence for activation of the early visual cortex during
imagery [31,57,79,80], while others confirmed primary visual cortex activation
[56,60,122]. Kosslyn [61] reviewed many of these studies containing a variety
of different tasks and paradigms and extracted three essential components un-
derlying early visual cortex activation. According to his analysis, three variables
explained all systematic differences in the probability of early visual cortex acti-
vation across studies: imagining with high resolution details, imagining shapes
instead of spatial arrangements and the sensitivity of the measurement tech-
nique. Forming a more detailed mental representation or mentally "zooming-in"
on a picture might more frequently depend on the early visual cortex, although a
study by Thompson et al. [122] showed no difference in the extent of early visual
cortex activation when imagining a lower or higher resolution image. This sug-
gests that the presence of either of these variables by itself might not be enough
to find early visual cortex activation, but rather a combination of these variables
enhances the probability. Because spatial imagery strongly relies on the pari-
etal cortex and spatial properties are topographically stored there [109], this
might explain why spatial imagery studies less often report early visual cortex
activation. Although mental imagery and perception share certain neural mech-
anisms [118], the information flow between brain regions in the visual imagery
network differs from visual perception. After all, we do not experience our men-
tal images as being exogenous, but rather as internally generated. To generate,
maintain, and manipulate these mental images, we also rely on memory pro-
cesses in the frontal, parietal, and temporal lobes of the brain.

If same neural substrates are shared by visual perception and imagination, then
any classifier trained on perceived stimuli might also be used to decode imagined
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stimuli [103]. Therefore, in this study we will first present random patterns (on
a 5x5 grid) to the subjects. Each element of the grid will act as an independent
stimulation source. The fMRI data collected in this training part will be used by
25 classifiers to learn the stimulation to cortical activation mapping. The cortical
activation is therefore a dependent variable and the stimulus impinging on the
retina is the independent variable. Once all the classifier are ready, they will be
used to decode novel perceived and imagined stimuli. To find if the real-time
fMRI neurofeedback has any impact on the decoding performance, the percep-
tion and imagination tasks will be performed twice, once with feedback and once
with out any feedback. We expect that the reconstruction accuracy for perceived
stimuli will be higher compared to the imagined stimuli. This is because pre-
vious studies have have shown that activation for imagined stimuli are not as
strong as perceived stimuli [89]. Furthermore, we expect that a condition with
feedback will be decoded with higher accuracy than similar condition with no
neurofeedback. This is because the neurofeedback of the decoded pattern might
drive the subjects perception or imagination so that next decoded pattern more
accurately reflects the perceived or imagined stimuli. Because this experiment is
purely visual, we expect the classifier to learn majority of its regression weights
from voxels in visual cortex. So by examining the classifier weights, we should
be able to see the visual cortex voxels being recruited for training.

We can now sum up our expected outcomes in three hypotheses:

H1: The decoding/recontruction accuracy for perceived stimuli will be higher
than the imagined stimuli

H2: Decoding accuracy will be higher for feedback conditions compared to the
corresponding non-feedback condition

H2: Classifier will learn most of its weights from voxels in the visual cortex

3.2 METHOD

3.2.1 Subjects

Four Dutch female subjects participated in the experiment. The average age of
the sample was 23.75(SD = 0.96) years. Subjects were recruited from a web-
based human subject pool management system (SONA). All subjects had normal
or corrected-to-normal vision. For their participation, subjects received either a
cash compensation or study credits. The study was approved by the ethical com-
mittee of the Donders Institute and all subjects gave a written informed consent
(see Appendices A and C).
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3.2.2 Experimental task

The goal of this experiment is to find out if visual perception can be decoded
in real time and if a classifier trained on perceived stimuli can also be used to
decode imagined stimuli as well. Furthermore, the effect of feeding the recon-
structed (or decoded) patterns back to subjects, while they are actively engaged
in the perception or imagination task, is also investigated. Naturally, if a sub-
ject is perceiving or imagining something (let’s say the letter D), then feeding
back the reconstructed or decoded letter might interfere with the ongoing per-
ception or imagination task which the subject is currently engaged in. This be-
cause the reconstruction can not be perfect all the time. So subjects might see
a reconstruction C, instead of the letter D that they are currently perceiving or
imagining. Not only will the feedback distract subjects from mentally focusing
on the task at hand, but more importantly attending to the feedback might in-
duce feedback related visual activation. This feedback related visual activation is
especially problematic for imagery condition because then the line between per-
ception and imagery becomes murky. The imagery condition no longer remains
purely imagery with visual neurofeedback. However, in this experiment present-
ing the neurofeedback in a modality other then visual is not feasible due to the
nature of the reconstructed patterns itself. For example if the auditory modal-
ity is to be used to give neurofeedback of the reconstructed patterns, then how
could one define the auditory equivalent of a jumbled up letter C? Therefore, it
was decided to resort to visual neurofeedback of the reconstructed patterns but
subject to the following constraints:

o The feedback itself should not invoke significant visual activation

e The feedback should be minimally intrusive and should not distract the
subject too much from the task at hand

e The cues during imagination should not invoke any visual activation. For
example, if a letter D is to be imagined during the task, then presenting
a cue letter D before the start of the trial might result in activations due
to perception of letter D, and then again the line between perception and
imagination becomes murky.

To satisfy these constraints, the content for the stimulus for the entire experi-
ment was generated using three building blocks (as shown in Figure 3.3), each
performing a distinct function. These building blocks along with their respective
function is mentioned below:

The fixation dot The fixation was presented in the middle of the screen and the
subjects were instructed to always fixate on it. Apart from providing the
subject a locus to fixate on, its color also served to indicate the beginning
or end of the imagination period during visual imagery conditions. When
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it turned from red to green the subjects had to start imagining and when it
turned from green to red they had to stop imagining

The stimulation block The stimulation block of the stimuli was used to activate
the visual cortex during training and perception conditions. This block
consisted of a 5x5 grid of white rectangles subtending an angle of 8.2° on
the visual cortex and flickering with a frequency of 8 Hz to induce maximal
BOLD response [2]. Each of the 25 rectangles could be turned on/off
independently of one another and hence any pattern could be constructed
on the 5 x 5 grid. The stimulation block were all turned off during imagery
condition and also during rest periods.

The feedback block The feedback block contained a 5x5 grid of empty grey
rectangles with very low contrast which prevents significant visual cortex
activation due to feedback. In conditions with feedback, each of these 25
rectangles were toggled depending on the classification result from the 25
binary classifiers (more on that in section 3.2.2.1) thereby giving subject
a feedback on how the reconstructed pattern looked like. Each of these
grey rectangles resided inside the white rectangles of the stimulation block
and therefore had a smaller dimension than the rectangles of the stimu-
lation block. This resulted in feedback being minimally intrusive because
subjects could focus on task at hand while at the same time viewing the
stimulus. Unlike the stimulation blocks which were made to flicker with 8
Hz, the feedback blocks did not flicker at all. This was to ensure minimal
activation of visual cortex due to feedback [2].

The entire experiment was designed by manipulating just these three building
blocks. The experiment itself was conducted in five conditions. In the first condi-
tion the stimuli for training the classifier was presented and after all the training
stimuli had been presented, 25 binary classifiers, one for each element of 5x5
grid, were trained on the collected fMRI data. In the second and third condi-
tion, the previously trained classifiers were used decode visual perception with-
out feedback and with feedback, respectively. In the fourth and fifth condition,
the same classifiers were again used to decode visual imagery without and with
feedback, respectively. The order of these conditions was not randomized across
subjects. The decision to conduct experiment in contiguous block of conditions
and not to intermix trials from different conditions, was motivated by the fact
that had trials from the four aforementioned conditions been intermixed, an in-
struction screen would have been required before each trial to explain the task in
that trial to the subject. Considering that the experiment was already 2.5 hours
long without these instruction screens, had we gone to randomizing the trials and
conditions, it would have easily extended the experiment duration by another 1
hour. This would have resulted in not only subject feeling extremely exhausted
but would have also resulted in violation of MRI scanning laws which do not
allow more than 3 hours of continuous scanning. Therefore, the experiment was
conducted in five big conditions and an instruction screen was presented only at
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Figure 3.3 | Basic building blocks of the stimulus. (a) Fixation Dot. Apart from providing the
subject a locus to fixate on, its color also served to indicate the beginning or end of the imagination
period during visual imagery conditions. When it turned from red to green the subjects had to
start imagining and when it turned from green to red they had to stop imagining (b) Feedback
blocks. These 25 blocks could be manipulated independently of each other hence any pattern could
be formed using these blocks. These blocks were used to provide feedback during perception and
imagination feedback conditions by turning them on/off according to the classifier prediction. During
the rest and non-feedback conditions, all feedback boxes are always visible (¢) Stimulation blocks.
These 25 white boxes could be made to appear or disappear independently of each other. Thus any
pattern could be formed. The stimulation blocks were used in the training and also in the visual
perception conditions. The pattern formed by these blocks was made to flicker at 8 Hz for maximal
BOLD signal.
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the start of each of these condition. Furthermore, by not intermixing trials from
different conditions, the chances of subjects learning a strategy that works best
for them, increased. We will now describe these conditions in detail.

3.2.2.1 Training Condition To learn the mapping from stimulus to cortical
activation, the training condition was used in which 100 random patterns were
presented to the subject. Each pattern was presented for 12 seconds followed by
12 seconds of rest to allow the hemodynamic activity from the previous pattern
to return to baseline (see Figure 3.4). During each 12 second long stimulation
period, the pattern was made to flicker with 8 Hz in order to induce maximal
BOLD response [2]. Each random pattern was constructed such that exactly
twelve of the stimulation blocks were ON and the rest OFE To ensure that cortical
areas corresponding to the each stimulation block was activated equally, in all
100 patterns each of the 25 stimulation blocks was ON for half of the patterns
and OFF for the rest of the half. The red fixation dot and the 25 feedback block
(grey rectangles) were always visible during training.

Classifier training The scans collected during training were used to train the
elastic net logistic regression classifier. The mixing parameter a parameter was
fixed to 0.99. For the regularization parameter A, the whole regularization path
was calculated with maximum number of allowed iterations set to 100. Opti-
mal setting of A was then computed using nested cross-validation on 75% of the
training data. For more details about elastic net, please refer to Chapter 2, Sec-
tion 2.3. The training data for the classifier was constructed by first shifting all
the scans collected in the training session by four TRs to counter the hemody-
namic delay. Then all the scans corresponding to the rest period were dropped.
After this, all 8 scans in each stimulation block were averaged together and these
100 averaged time series were then used to train 25 classifier, one for each ele-
ment of the grid. These trained classifiers were then used to predict the stimuli
in incoming scans of all the subsequent test sessions.

3.2.2.2 Visual perception with no feedback condition This condition
was used to assess the decoding performance for perceived stimuli when no de-
coding feedback was presented. Each trial contains 12 TRs (18 s) of task followed
by 12 TRs of rest in which the subjects were allowed to close their eyes. The task
in each trial consists of fixating on the letter flickering with 8 Hz. Sixteen trails
were conducted in this manner, one trial for each of the letter in the word DON-
DERSINSTITUTE.

3.2.2.3 Visual perception with feedback condition This condition was
used to investigate the decoding of perceived stimuli when the classifier predic-
tion is fed back to the subject during the task. Each trial contains 12 TRs (18 s)
of task followed by 12 TRs of rest in which the subjects were allowed to close
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Figure 3.4 | Stimuli used for training. The stimuli contains 100 random patterns. Each pattern
flickers with 8 Hz for 12 seconds followed by 12 seconds of rest in which subjects were allowed to
close their eyes.
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Figure 3.5 | Stimuli used in ‘Visual perception with no feedback condition’. The figures shows
an example of one trial. Each trial contains 12 TRs (18 s) of task followed by 12 TRs of rest in which
the subjects were allowed to close their eyes. The task in each trial consists of fixating on a letter, in
this case ‘D’, flickering with 8 Hz. Sixteen trails were conducted in this manner, one trial for each of
the letter in the word DONDERSINSTITUTE.
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their eyes. The task consists of fixating on a letter flickering with 8 Hz. In the
first two TRs, highlighted in yellow in Figure 3.6, there is no feedback due to
pipeline delay. Similarly, in the four TRs that follow, highlighted in red, there
is no feedback due to hemodynamic delay. The feedback starts from the 7th TR
and is presented until the 16th TR although the task/visual stimulation stops
after the 12th TR. This is due to the aforementioned hemodynamic lag. The
feedback was such that if the classifier prediction for the grid element was below
0.5, the corresponding feedback block was turned off and turned on if above 0.5.
Sixteen trails were conducted in this manner, one for each of the letter in the
word DONDERSINSTITUTE.

3.2.2.4 Visual imagination with no feed-
back condition This condition was used to
assess the decoding performance for imagined
stimuli when no decoding results were pre-
sented to the subject. Because no feedback
is shown in this condition, therefore, the feed-
back grid remains static throughout the dura-
tion of the trial as shown in Figure 3.8. The
cue letter was presented two TRs before the
beginning of each trial in the rest period of
the preceding trial. After the cue was over,
the fixation dot turned from red to green, giv-
ing an indication to subjects that they have to
start imagining the capital letter correspond-

Figure 3.7 | Basis set of letters used
° - in the experiment. These 9 letters were
ing to the letter they saw in the cue. The ex- used to form a 16 letter word DONDER-

act pattern to imagine (ShOWH in ﬁgure 37) SINSTITUTE. These 16 letters were then

was already memorized and thoroughly prac- Used for the 16 trials of each of the four
test conditions of the experiment. These

ticed by the participants in the pre-experiment g patterns were memorized by the sub-
briefing. The imagery task ended at the 12th jects.

TR and was indicated by a change of color the

fixation dot from green to red. Thus, each trial contained 12 TRs of task followed
by 12 TRs of rest. Sixteen trails were conducted in this manner, one trial for each
of the letter in the word DONDERSINSTITUTE.

3.2.2.5 Visual imagination with feedback condition This condition was
used to assess the decoding performance for imagined stimuli while the recon-
struction of the classifier prediction is being simultaneously fed back to the sub-
ject. The cue was presented two TRs before the beginning of each trial in the rest
period of the preceding trial. After the cue was over, the fixation dot turned from
red to green, giving an indication to the subjects that they have to start imagining
the capital letter corresponding to the letter they saw in the cue. In the first two
TRs, highlighted in yellow in Figure 3.9, no feedback was shown due to pipeline
delay. Similarly, no feedback was shown in the four TRs that followed due to
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1TR / Current Trial
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Figure 3.6 | Stimuli used in ‘Visual perception with feedback condition’. In each trial of visual
perception with feedback condition, the classifier prediction is also shown to the subjects. Each trial
contains 12 TRs (18 s) of task followed by 12 TRs of rest in which the subjects were allowed to close
their eyes. The task consists of fixating on a letter, in this case ‘D’, flickering with 8 Hz. In the first
two TRs, highlighted in yellow, there is no feedback due to pipeline delay. In the four TRs that follow,
highlighted in red, there is no feedback due to hemodynamic delay. The feedback starts from 7th
TR and is presented until the 16th TR although the task/visual stimulation stops after the 12th TR.
This is due to aforementioned hemodynamic lag. The feedback is presented such that if the classifier
prediction for the grid element is below 0.5, the corresponding feedback block is turned off and if
its above 0.5 then its turn on. Sixteen trails were conducted in this manner, one trial for each of the
letter in the word DONDERSINSTITUTE.
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17TR
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~ 1TR / Current Trial
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Figure 3.8 | Stimuli used in ‘Visual imagery with no feedback condition’. In each trial of visual
imagery with feedback no condition, no classifier prediction is shown to the subjects. Therefore, the
feedback grid remains static throughout the duration of the trial. The cue is presented two TRs before
the beginning of each trial in the rest period of the preceding trial. After the cue is over, the fixation
dot turns from red to green, giving an indication to subjects that they have to start imagining the
capital letter corresponding to the letter they saw in the cue. The imagery task ends at the 12th TR
and is indicated by a change of color the fixation dot from green to red. Thus, each trial contains 12
TRs (18 s) of task followed by 12 TRs of rest. Sixteen trails were conducted in this manner, one trial
for each of the letter in the word DONDERSINSTITUTE.
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hemodynamic delay. From 7th TR until the 16th TR, the feedback was shown
by manipulating the visibility of the feedback blocks according to the classifier
prediction. The imagery task ends at the 12th TR and is indicated by a change of
color of the fixation dot from green to red. The feedback, however, was visible
until the 16th TR due to hemodynamic lag. Thus, each trial contained 12 TRs
(18 s) of task followed by 12 TRs of rest. Sixteen trails were conducted in this
manner, one trial for each of the letter in the word DONDERSINSTITUTE.

3.2.3 Experimental protocol

Before putting subjects in the scanner, they were thoroughly briefed about the
experiment. This was done to avoid any communication during real-time fMRI
run when the scanner noise is too high for two-way communication between the
subject and the experimenter. During this pre-screen briefing (see Appendix E
for more details), subjects were shown video recordings of all five experimental
conditions and the task was explained with the help of these videos. They were
specifically instructed that the feedback would be delayed by about 9 seconds
and that no matter what the feedback was, they were to always concentrate
on the task without moving their gaze from the central fixation. Furthermore,
they were allowed to close their eyes during rest periods but were advised to
open their eyes a few seconds before this rest period was over. Subjects were
instructed to adjust the viewing mirror in the scanner before the start of the
experiment such that they were comfortably viewing the center of the screen at
all times. After subjects had adjusted the mirror, they were strictly advised not to
change its position through out the rest of the duration of the experiment.

Once subjects got a thorough grasp of the experiment, they were asked to mem-
orize the patterns corresponding to 9 letters DONERSITU. These exact patterns
were to be later imagined in the imagery conditions. The memorized patterns
were practiced on an interactive software that had the same look and feel as the
screen that subject would be seeing in the scanner during imagery conditions.
Once the experimenter was sure that all patterns have been correctly memo-
rized, the subject was put in the scanner. An eye tracker was used to monitor if
the subject was awake in the scanner.

After the experiment was over, the subject was asked to fill out a computer based
vividness of visual Imagery questionnaire (VVIQ) (see Appendix D for more de-
tails). The Vividness of Visual Imagery Questionnaire (VVIQ) was published in
1973 by the British psychologist David Marks [75]. The VVIQ consists of 16
items in four groups of 4 items in which the participant was asked to consider
the image formed in thinking about a specific scenes and situations. The vivid-
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Figure 3.9 | Stimuli used in ‘Visual imagery with feedback condition.” In each trial of visual
imagery with feedback condition, the classifier feedback is also shown to the subjects. The cue is
presented two TRs before the beginning of each trial in the rest period of the preceding trial. After
the cue is over, the fixation dot turns from red to green, giving an indication to subjects that they
have to start imagining the capital letter corresponding to the letter they saw in the cue. In the first
two TRs, highlighted in yellow, no feedback is shown due to pipeline delay. Similarly, no feedback
is shown in the 4TRs that follow due to hemodynamic delay. From 7th TR until the 16th TR, the
feedback was shown by manipulating the visibility of the feedback blocks according to the classifier
prediction. The imagery task ends at the 12th TR and is indicated by a change of color the fixation
dot from green to red. The feedback is visible until the 16th TR due to hemodynamic lag. Thus, each
trial contains 12 TRs (18 s) of task followed by 12 TRs of rest. Sixteen trails were conducted in this
manner, one trial for each of the letter in the word DONDERSINSTITUTE.
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ness of the image was rated along a 5-point Likert® scale. The questionnaire was
conducted twice, once eyes open and once with eyes closed. The questionnaire
has been widely used as a measure of individual differences in vividness of vi-
sual imagery. The large body of evidence confirms that the VVIQ is a valid and
reliable psychometric measure of visual image vividness [21, 38].

The VVIQ was immediately followed by a short computer-based demographics
questionnaire, which among the usual things, also measured how boring or in-
teresting the participants found the experiment to be (see Appendix D for more
details). Furthermore, it also inquired as to which letter patterns the subjects
difficult to imagine.

3.2.4 MRI Acquisition parameters

Experiments were performed at the Donders
Institute MRI lab using a Siemens MAGNE-
TOM Tim TRIO 3.0 T scanner with a 32-
channel head coil. All functional images were
acquired using a single shot gradient EPI se-
quence (TR/TE = 1500/30 ms; Flip angle =
75°; voxel size = 3x3x3.3 mm; distance factor
= 10 %). 21 axial slices were acquired, ori-
ented typically at 30° to the AC-PC (Anterior-
Posterior Commissure) line as shown in Fig-
ure 3.10. A high-resolution anatomical im-
age was acquired using an MP-RAGE sequence
(TE/TR=3.03/2300 ms; 192 sagittal slices,
isotropic voxel size of 1x1x1 mm). The Figure 3.10 | Slice positioning. 21 ax-
anatomical images were acquired before the ial slices were acquired orientated typi-
real-time run and these high resolution im- Ccllyat30° from the AC-PCline. As slice

d .. he sli # 1 and 21 were to be masked out in the
ages were used to position the slices. preprocessing later on, these two slices

covered no brain region which was of in-
terest in this study.

3.2.5 Real-time fMRI processing

All functional scans were acquired using the distributed real-time fMRI pipeline
implementation. In this pipeline, the preprocessing, classification, and synchro-
nization were each performed on a separate PC. For more details about this
pipeline, please refer to Chapter 5, Section 5.1. The functional scans acquired

3 Actually, a 6-point Likert scale was used. The default position of the pointer was 6th point on the
scale that represented no rating at all. If the subject did not move the slider from this position, the
test would not proceed. This was to encourage the subjects to move the slider rather than just using
the default slider position and skipping ahead.
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using this pipeline were preprocessed before being used for classification. The
preprocessing steps included:

Slice time correction Slice time correction with trilinear interpolation was used
to correct for differences in the acquisition time of various slices in each scan.

Motion correction A three pass motion correction procedure was used. In the
first and second pass, the head motion was corrected by the Siemens scanner,
prospectively (PACE) and retrospectively (MoCo), respectively. In the third pass,
retrospective motion correction was applied by the real-time pipeline to remove
any residual motion.

Boundary slice Masking The average duration of this experiment is 90 min-
utes. With PACE enabled, only a very small motion occurs and on average only
half of the first and last slices gets damaged due to motion. Hence by masking
the entire first and last slices, it was ensured that none of the damaged voxels
gets used in the training and test session.

Nuisance regressors removal Five regressors were used to remove scanner
drifts, offsets, and motion related activation.

Brain Extraction The skull was stripped away from all functional scans by ap-
plying a skull mask which was derived using the Brain Extraction Tool (BET)
[11,116].

3.2.6 Data analysis

After the classifier had been trained during the actual real-time experiment, the
prediction was started. Because each trial contained 12 scans (or TRs) therefore,
each current scan was averaged with all the previous scans of a trial in the hope
that classification on averaged scans will be more robust and accurate than on
individual non-averaged scans. The trained classifiers, their predictions and pre-
processed fMRI data for every scan of the actual real-time experiment run were
saved for any offline statistics and additional post-hoc analyses.

The saved predicted labels were used to calculate the prediction accuracy of the
actual real-time experiment. Because each letter in the test conditions is con-
structed from 25 individual elements (5x5 grid) or building blocks therefore,
there are 25 binary predictions, one for each element of the grid. By taking a
ratio of the correctly predicted gird elements and the total number of grid el-
ements, the accuracy for all 16 trials in each condition was calculated. This
accuracy represents the proportion of grid elements that were correctly classi-
fied. Because each reconstructed letter is built from the predictions of binary
classifiers therefore, the chance level accuracy for this experiment is 50%. A bi-
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nomial test (p-level 0.05) was then used to find the if the accuracies obtained
were significantly above chance level. A binomial test can be used when data is
dichotomous - that is, when each individual in the sample is classified in one of
two categories (e.g. category A and category B) and when one wants to know if
the proportion of individuals falling in each category differs from chance or from
some pre-specified probabilities of falling into those categories. .

Additional post-hoc analyses were done by using the preprocessed data and the
trained classifier. For example, during the actual real-time experiment, in each
test session, every incoming scan in a trial was averaged with all the previous
scans of the same trial and then classified. To find if this averaging was any su-
perior to no averaging at all, a post-hoc analysis was done where only current
scans were fed to the classifier for prediction. Similarly, in the actual experiment,
voxels from the entire brain were used during classifier training and testing. To
find if restricting classifiers to only grey matter voxels in occipital cortex and cal-
carine sulcus, would yield any better decoding performance, a post-hoc analysis
was done in which a subject-specific Anatomical Automatic Labeling (AAL) mask
[127] was constructed by warping the standard AAL mask in MNI (Montreal
Neurological Institute) space to native space [6] using the inverse of the spatial
transformation matrix obtained from the SPM8 (Wellcome Department of Cog-
nitive Neurology, Queens Square, London, UK), unified segmentation normaliza-
tion [7]. This mask was then used to find the grey matter voxels in occipital and
calcarine sulcus of each subject. Then the classifiers were retrained and retested
on these restricted subset of voxels for each subject and the prediction accuracies
were recalculated.

Single voxel time course analysis was performed in Analyze4D (www.analyze4d.
com) on MoCo series from the preprocessed data buffer. The time course was
detrended by using 0.01 Hz high-pass filter. No additional processing was applied
on the time courses. Furthermore, to assess distribution of classifier weights,
these weights were overlayed onto first functional scan of the raw data buffer
using Analyze4D.

Averaged reconstructions for each of the nine letters in DONERSITU were con-
structed post-hoc by averaging together the single trial reconstructions of each of
these letters across subjects for each condition. As these averaged reconstructions
turned out to be rather crude, an additional step of template matching was per-
formed where each averaged raw reconstructed letter was cross-correlated with
ground truth letters (i.e. perfectly shaped letters). The letter that correlated the
highest with raw reconstructed letter was chosen as closest match.
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3.3 RESULTS

The aim of this experiment was to find if perceived and imagined stimuli can be
decoded in real-time using a classifier trained only on perceived stimuli. Fur-
thermore, the study tried to find the effect of neurofeedback of reconstructed
patterns on subject’s task performance.

The reconstruction accuracy for all four test session averaged across trials across
the group is shown in Figure 3.11. These results show that visual perception
without feedback condition was decoded with an average accuracy of 55% (SD
= 6.8), whereas visual perception with feedback condition was decoded with an
accuracy of 52% (SD = 4.6). Similarly, the decoding accuracy for visual imagina-
tion without feedback condition was found to be 50% (SD = 4.6), whereas visual
imagination with feedback condition was decoding with an accuracy of 48% (SD
= 3.8). Contrary to our hypothesis, conditions without feedback have higher
decoding accuracy than the corresponding conditions with feedback.
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Figure 3.11 | Decoding accuracy per subject. Shows the decoding accuracy for every subject for
all four experimental conditions. The decoding accuracy is statistically significant only for Subject 02
and 03 in visual perception condition and is marked by *. Note: The chance level performance is 50%.

Figure 3.12 shows the accuracy in all four conditions as a function of time into
each trial. A linear regression analysis was conducted on the average of the
accuracy(as a function of TR) for all four condition to detect any trend. The
results of that analysis shows that the accuracy increases with increasing TR
B =0.802, p =0.02, a = 0.05. This is because accumulating and averaging over
scan in a trial gives a more accurate measure of the BOLD activity due to reduced
noise in the averaged signal.
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Figure 3.12 | Decoding accuracy per TR with cumulative averaging of scan data. Shows the
decoding accuracy as a function TR averaged across all subjects for each condition. Decoding was
done at each TR on the cumulative average of the current and all the previous scans of a trial. As
more and more scans get accumulated, the decoding accuracy increases.

To further investigate the effect of accumulating and averaging scans over each
trial on the classification accuracy, the analysis was repeated offline but this time
instead of classifying on the average of current and all previous scans of a trial,
the classification was carried out on just the current scan. The results, as depicted
in the Figure 3.13, show a decreased performance compared to the previous case
in which all past scans in a trial were accumulated with current scan. A linear
regression analysis was conducted on the average of the accuracy(as a function
of TR) of all four conditions to detect any trends in the data. The results of
that analysis shows that the accuracy does not change in predictable manner
with increase in TR f = —0.124, p = 0.7, a = 0.05 thereby indicating that
not averaging over previous scans is suboptimal. Figure 3.14 shows the VVIQ
(Vividness of Visual Imagery Questionnaire) scores for all four subjects. Higher
scores on this graph means a better ability to form mental imagery. To find if
there is any correlation between VVIQ and decoding performance in imagery
conditions, the average accuracy for each subject in both imagery conditions was
correlated with the VVIQ. The two variables (VVIQ score and decoding accuracy)
were found to be not correlated, r(4) = .359, p = 0.64.

The reconstructed patterns for each of the four test sessions are shown in Fig-
ures 3.15 and 3.16. The reconstructed letter don’t look very recognizable. There-
fore, template matching was then performed on the raw averaged reconstructed
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Figure 3.13 | Decoding accuracy per TR without averaging of scan data. Shows the decoding
accuracy as a function TR averaged across all subject for each condition. Decoding was done at each
TR using only the scan data from the current scan.
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Figure 3.14 | Vividness of Visual Imagery(VVIQ) score for each subject
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pattern to pick the best match in the candidate set. The candidate set for tem-
plate matching contained the letters DONERSITU.
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Figure 3.15 | Reconstructions for visual perception condition averaged across group. The letter
on top of each pattern is the true label.

Because significant reconstruction accuracy was obtained only for subject 02 and
03 for visual perception condition, therefore, the reconstructions averaged across
these two subjects was also calculated and is shown in 3.17. This was done in
the hope that by excluding the worst subjects, perhaps the reconstructed might
improve however this wasn’t to be.
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Figure 3.16 | Reconstructions for visual imagery condition averaged across group. The letter
on top of each pattern is the true label.
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Figure 3.17 | Reconstructions for visual perception condition averaged across subject 02 and
03. The letter on top of each pattern is the true label.
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3.4 DISCUSSION

The current study tried to decode perceived and imagined stimuli in real-time
and investigated the effect of neurofeedback on the task performance. In two out
of four subjects, the decoding performance for visual perception was significantly
above chance level of 50%. However, the decoding performance for imagery con-
dition was not found to statistically significant. There could be several reasons
for these observation. First and foremost is motivation. The experiment was
about 150 minutes long which is almost at the edge of legally allowed limit of
continuous scanning. The subjects started to feel quite tired and weary after only
30 minutes inside the scanner as they had to perform an excruciatingly difficult
task of constantly staring at flashing patterns for more than an hour. Further-
more, subjects got a fixed compensation for their participation in the experiment
no matter how good or otherwise they performed in the experiment. The lack
of any monetary incentive coupled with the task difficulty is made even worst by
the scanner environment where subjects lie on a very cosy bed. With the head
fixated by foam padding, it is very easy to go to sleep, even with all that scanner
noise. One of the experiment had to be aborted prematurely because the subject
was too tired to open his eyes for more than a few seconds during the stimula-
tion periods. Similarly, other subjects also had a hard time not sleeping during
the experiment and the experimenter had to intervene every now and then via
intercom to warn the subjects. A conclusive proof that motivation was indeed a
major factor in such low performance in the experiment, is a pilot experiment
that was conducted on the author (highly motivated!) himself. The author per-
formed visual perception without feedback condition at 65% accuracy, 10% higher
than the best subject reported in this study. The reconstructions obtained for that
session are amazingly accurate. To see of a footage of the session and the recon-
structions, please refer to the video in Appendix G. Unfortunately, the remaining
three conditions were not conducted by the author because of a technical mal-
function. However, the video provides a convincing proof that it is possible to
decode at least visual perception in real-time with acceptable levels of decoding
performance, albeit, it is not reflected in performances of actual subjects.

Another reason for low decoding accuracy is some inherent design flaws which,
in hindsight, cold have easily been avoided. The first biggest design flaw was the
length of stimulation period during training. Each random pattern was made to
flicker for 12 seconds followed by 12 seconds of rest. This 12 seconds stimulation
is just way too long. Studies have shows that if a stimuli stimulates the visual
cortex for more than 4 seconds, then activations in the cortical areas activated by
that particular stimuli might bleed into the surrounding cortical areas [14,71].
Thus any stimulation more than 4 seconds long can severely blur the locus of the
actual activation. This is exactly what we see in the time course of the training
block (Figure 3.19). By looking at the time course (Figure 3.20) of one such voxel
(Figure 3.19) for subject 04, it can be clearly seen that the voxel is responding
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to every trial in the training session when it should only respond to only 50 %
of the trials in the training session because each pixel in the training stimuli was
activated no more than 50 % of the trials. This shows that when a voxel was
supposed to be OFE activations from the neighboring ON voxels crept into it
and turned it ON as well. Thus the voxels presented to the classifier for training
do not have much meaningful information to help it in learning any meaningful
mapping from stimulus to cortical activation. This is again confirmed by looking
at the classifier weight distribution in Figure 3.18. In a visual experiment such as
ours, one would expect to find the majority of weights to be concentrated on the
visual cortex. However, the classifier distribution obtained for all subjects show
that the voxels used for training are disbursed around the whole brain. This
indicates that the visual cortex voxels did not had any meaningful information
in the first place to help classifier choose them to train itself on. Instead, the
classifier went on a wild goose across the entire brain and picked any voxel for
training that it found to be remotely correlating to the stimulus.

The second design flaw is the rather large voxel size (3 x 3 x 3 mm) used in
this study. Recently a study conducted specifically to find scanning parameters
for optimal decoding in early visual cortex using a 32-channel fMRI head coil.
The findings of the study reveals that the best decoding performance is obtained
for voxel size of 2 x 2 x 2 mm acquired using SENSE (SENSitivty Encoding)
protocol [19]. For future experiments a variation of the SENSE sequence, called
SENSE-EPI should be used to substantially increase speed and spatial resolution
of conventional EPI-based fMRI [98].

The third design flaw is not filtering out the irrelevant voxels before training. The
classifiers were trained and tested on the whole brain data which includes grey
matter, CSE and white matter voxels, when only voxels in the grey matter encode
any meaningful information. This not only increase training time but may also
yield suboptimally trained classifiers. In future studies, grey matter mask should
be applied to confine analysis to only grey matter voxels. An even better option
would be to confine analysis to only the retinotopically organized areas of the
visual cortex by conducting an additional localizer experiment before the start
of each experiment. Confining classifier training only to retinotopically mapped
voxels has yielded much better decoding accuracies in visual cortex related ex-
periments currently ongoing in our department. The decision to not perform
grey matter masking or retinotopic mapping was based purely on the fact that
real-time fMRI pipeline available at that time did not had these feature. Further-
more, retinotopic mapping would also have prolonged the experiment duration
by approximately 20-25 minutes which would have made an already painfully
long experiment even longer.

By looking at the decoding accuracies in the feedback and non-feedback condi-
tion, it can be observed that subjects perform better in non-feedback situations
than in feedback situations. This can be explained by the fact that the feedback
itself induces activity patterns in the visual cortex and this feedback if incor-
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Sub 03 Sub 04

Figure 3.18 | Classifier Weights. The classifier weights shown in black color are overlayed on a func-
tional image. The weights seem to be distributed all over the brain rather than being concentrated at
the occipital cortex, indicting that not much discriminative information was present there.

Figure 3.19 | Voxel for time course analysis. The voxel highlighted in white was chosen for plotting
the time courses in Figure 3.20. The voxels highlighted in red represent the grey matter of occipital
cortex and calcarine sulcus.
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Figure 3.20 | Voxel time course. Time course of one voxel highlighted in white in Figure 3.19 for all
the different experimental phases. All the time courses have been detrended and shifted by 4 TRs (a)
Time course for 24 of the 100 training blocks (b) Time course for visual perception with no feedback
condition (¢) Time course for visual perception with feedback condition (d) Time course for visual
imagery with no feedback condition(e) Time course for visual imagery with feedback condition

rect might negatively affect the ongoing perception or imagination by the sub-
ject. By presenting feedback while the subject is actively engaged in the percep-
tion/imagination might result in shifting of gaze which could result in shift in the
voxel activity, thereby resulting in poor performance. This can be seen by com-
paring the voxel time courses of the visual perception with and without feedback
condition. In non-feedback conditions the voxel is responding very predictably
to the stimuli while the same voxel in the feedback condition has a considerably
less predictable response in the feedback condition. Thus the current strategy
of presenting the real-time feedback seems to negatively impacting the subject
performance by being too distracting. A more clever and non-obtrusive way of
presenting feedback for this kind of paradigm, therefore, needs to be developed
for future experiments.

The study failed to show that imagined stimuli could be decoded. No significant
decoding accuracy was obtained for any of the participants in the visual imagina-
tion sessions. This is in contrast to much of the existing research. For example,
studies in visual perceptual learning (e.g., [114]) have shown that it is possible
for subjects to voluntarily evoke the same activity in the visual cortex, similar
to the one evoked during actual perception of the stimuli, hence demonstrating
that it is possible to decode a stimuli even in its absence. However, these stud-
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ies use simple stimuli like gratings and only a limited number of orientations*
for decoding, which makes the problem of decoding much easier. Furthermore,
these studies use longer trial duration and more repetitions of the trials which
helped subjects in learning the relevant strategy that assisted them in getting
better decoding performance. In our study, the patterns to be imagined are too
complex (compared to simple grating), the trial duration too small, and there
are not enough repetitions of the trials to allow subjects to learn any effective
strategy for getting the best decoding performance. The fact that the patterns
to be imagined were very difficult was reported by the subjects on a question-
naire (see appendix D - demographics section ) conducted after the experiment
and also in informal discussions with participants after the experiment was over.
In particular, subjects found E,R,and D very difficult to imagine. Future studies
should therefore consider using simple characters like +, - etc. with longer trial
durations and more repetitions of the same trials. Furthermore, to keep subjects
motivated and attentive during the whole duration of the experiment, a reward
system should be in place where the subject could receive compensation in par
with their performance in the task.

3.5 SUGGESTIONS FOR FUTURE IMPROVEMENTS

The lessons learned in these experiments can be summarized a few suggestions
that can help researchers in future to better design their real-time experiments.

e In any visual cortex related experiment, it’s best to confine classifier train-
ing to retinotopically mapped voxels

o If retinotopic map is not available for any reason, then the classifier training
should be confined to grey matter voxels in occipital cortex and calcarine
sulcus. Such a mask can be constructed using the Anatomic Automatic
Labeling Atlas (AAL).

o If the occipital cortex and calcarine mask is not available, then at least a
grey matter mask should be used. Such mask can extracted from SPM8
unified segmentation and normalization procedure.

e The stimulation duration of visual cortex should not exceed 4 seconds,
otherwise activation will spread to neighboring voxels, thereby activating
them when they shouldn’t be.

o Voxel size for visual cortex experiment should be no more than 2 x 2 x 2
mm. Furthermore, an EPI-SENSE sequence should be used to acquire them
for better SNR.

4By orientation we mean the angle which the grating makes with the horizontal axis. For example
the orientation of a horizontal grating is 05 degrees and for vertical grating it’s 90 degrees.
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Neurofeedback should be delivered as timely as possible.

If the duration of real-time experiment starts to become too long, conduct
the experiment in separate sessions on separate days. For example, the
classifier can be trained one day and tested the other. Each scanning ses-
sion should not exceed more than 70 minutes.

If conducting the experiment in separate sessions is not feasible then condi-
tions should be divided among groups of subjects. For example one group
of subjects can perform one condition and the other group can perform
the other condition. This will lead to a decrease in experiment duration
because now each subject has to attempt only half of the conditions than
before.

Trials in different conditions should be randomized to avoid any systematic
errors entering into on particular condition and not the others. One side
effect of this would be that it would lead to a decrease in learning effect if
trials from feedback and non-feedback conditions are intermixed.

Subjects should not only be given fixed compensation for their participa-
tion but should also be motivated by the promise of a monetary reward if
their performance during the experiment exceeds a certain threshold.






CHAPTER 4

ONLINE VOLUNTARY CONTROL OF
CATEGORY-SELECTIVE BRAIN
REGIONS

ing this study. The experiment tries to investigate if category of the at-

tended stimulus in a scenario where two competing stimuli are presented,
can be decoded in real-time. Furthermore, the experiment tries to investigate
if presenting neurofeedback of ongoing decoding can yield any increase in task
performance. The chapter begins with a literature review of pertinent studies
along with the improved neurofeedback strategy which will be used in this ex-
periment. Lessons learned with the previous experiment (Chapter 3) will be used
to fine tune the implementation in this experiment. The method section describes
all the details of the experimental setup along with a detailed description of the
statistics carried out on both online and offline data. The chapter concludes with
a discussion of the important findings of this experiment.

THIS chapter describes the second and the last experiment conducted dur-
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4.1 INTRODUCTION

In our daily life, we are always confronted with situations where multiple objects
or scenes compete for our attention but somehow our brain is able to filter out
the pertinent information from all the distractions present out there. When im-
ages of familiar concepts impinge on the retina, neurons in the human medial
temporal encode these in an abstract and invariant manner [29, 100] as these
neurons are selectively activated by remarkably different pictures of same indi-
viduals, landmarks or objects and in some cases even by letter strings with their
names [101]. These representations can be activated again when subjects view
[100], imagine [64] or recall these concepts or episodes [34]. But how do these
neurons behave when a person is faced with competing visual inputs. In 2010,
a study by Moran Cerf and colleagues [17] reported that these neurons can also
fire selectively when attending to a particular face in a hybrid of two competing
faces. Using intracranial recordings and a ECoG-based Brain-Computer Interface
(BCI) setup, they demonstrated that subjects were able to reliably modulate the
firing of these neurons to manipulate an initial 50/50 hybrid of two different
faces, a target and a non-target face, towards the target face. Before each trial
subjects were briefly shown target and non-target face pictures. They were then
shown a 50/50 hybrid of these two pictures and were asked to enhance the target
picture by focusing their thoughts on it. The firing rates of MTL neurons were
fed into a real-time decoder that could change the visibility ratios until either
the target was fully visible (success), the distractor was fully visible (failure), or
until 10 s had passed (timeout). The results showed that subjects were able to
reliably regulate, often on the first trial, the firing rate of their neurons, increas-
ing the rate of some while simultaneously decreasing the rate of others. Their
experiment demonstrated that despite of the presence of competing retinal sen-
sory inputs, subjects were able to voluntarily, rapidly and differentially up- or
down-regulate the firing of the MTL neurons by object-based selective attention.

In Cerf et al. study, neurons that fired for faces of particular persons such as
Josh Brolin and Marilyn Monroe were identified before the experiment in a pre-
screen session. The participant was then shown a 50/50 hybrid of these pictures
and the firing rates from the previously identified responsive neurons were fed
in a decoder which adjusted the relative mix of the target and non-target pic-
ture depending on the activity of these neurons. Because fMRI measure activity
from a huge population of neurons, we want to investigate if it is also possible to
decode the attended stimulus from two competing stimuli using fMRI BOLD ac-
tivity. Instead of using the hybrid of two faces (as was used in the Cerf study) and
trying to decode the within-category information, we will try to decode between-
category information. The categories that were selected for this purpose are
faces and places. Numerous studies have shown that pictures of faces and places
invoke spatially distinct and dissociable cortical regions namely, Fusiform Face
Area (FFA) for the face pictures and Parahippocampal Place Area (PPA) for pic-
tures of scenes [3,26,53,77]. By using activity in these category selective areas
we will try to demonstrate if it is possible to decoded the attended picture cate-
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gory (a face or a place), when the subject is presented with overlapping pictures
of a face and a place. A recent study [133] to investigate the effect of repetition
priming on activity in FFA and PPA has shown that when subjects were presented
with overlapping pictures of faces and places and asked to attend to only one
them, an attenuation effect was observed in the BOLD signal in the brain regions
associated with the unattended category. This indicates that it might be possible
for machine learning technique to detect this activity differential and predict the
attended category. We therefore, hypothesize that a classifier trained on fMRI
activity corresponding to the perception of faces and places will be able to pre-
dict the attended category using the fMRI activity of the brain when the subject
is attending to target category in a hybrid picture of target and non-target cate-
gory. We hypothesize that decoding will be very high because previous decoding
studies with pictures of faces, places, objects, and tools have also demonstrated
very high decoding accuracies [115].

H1: The attended category will be decoded with very high accuracy

In the experiment that we described in the previous chapter, scans in the tran-
sition period, i.e. in the first 6s on HRF curve where the BOLD activity is not
fully mature, were not classified. They were simply ignored. This caused a lack
or any feedback for the the scans collected in this period. The feedback was
started only when this transitional period was over. It is as if you are driving
a car on the road and suddenly, out of nowhere, you see a deer pop up in the
middle of the road. You hit the brakes, but your car does not respond instantly.
It comes to a halt 6 seconds after you have pressed the brakes. By that time, it’s
too late already. Timely feedback is a crucial prerequisite for operant condition-
ing [85,104]. Therefore, in this experiment we will follow a different approach.
Instead of ignoring the scans in the initial 6s of the BOLD activity, we will try to
classify these scans as well just like scans the stable period that follow the tran-
sition period. This will completely remove lag in feedback due to hemodynamic
delay. A study by LaConte et al. shows that BOLD activity in the transition period
contains reliable structure that can result in a better trained classifier compared
to when this transition activity is not used at all [67]. Hence, by classifying the
BOLD activity in the transition period and feeding back the classification results
to the subject, we will circumvent the fMRI BOLD delay effects. We hypothesize
that above chance level decoding accuracies will be obtained in the transition pe-
riod. We also predict that the prediction accuracies will increase in the transition
period and will level off in the stable periods. This is because the BOLD signal
strength increases in the transition period and levels off in stable period and the
same will also be reflected in decoding performance.

H2: The decoding accuracy will be lower in the scans in transition period com-
pared to the stable period

H3: The decoding accuracy will increase gradually increase in scans in the
transition period and will level off in scans in the stable period.

Furthermore, we will investigate the effect of real-time fMRI neurofeedback on
decoding performance. Trials will be conducted once with neurofeedback and
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once without neurofeedback. We predict that due to feedback, subjects will per-
form better in a trial because they will always have a feedback available as to
how good or otherwise they are doing in the trial and adjust their attention ac-
cordingly. In the non-feedback condition we expect that subjects attention will
switch between the target and non-target pictures and this attentional shift might
also get reflected in the trial-by-trial decoding performance.

H4: Subjects will perform better in trials with feedback compared to trials with
no neurofeedback

H5: The attention will shift between target and non-target picture in trials with
no feedback whereas, in trials with feedback, the attention will remain glued to
the target picture for longer durations of time.

Moreover, we expect that the decoding performance for trials with face picture as
a target will be the same as trials with place picture as a target. In other words,
we expect the decoding to to be unbiased.

H6: The decoding accuracy will be independent of the target category

4.2 METHOD

4.2.1 Subjects

Seven subjects (6 male) participated in the experiment. The average age of the
sample was 23.4(SD = 4.6) years. Subjects were recruited from a web-based hu-
man subject pool management system (SONA). All subjects had normal vision.
For their participation, subjects received either a cash compensation or study
credits. The study was approved by the ethical committee of the Donders Insti-
tute and all subjects gave a written informed consent (see Appendices B and C).
To keep participants motivated throughout the task, they were promised a cash
reward in case their task performance (decoding accuracy) exceeded 95%.

4.2.2 Experimental Task

Because the experiment tries to investigate if the attended picture in two over-
lapping pictures of a face and place could be decoded therefore, its necessary
to train a classifier first to learn which brain areas respond to faces and places.
Once the classifier has been been trained, we can present overlapping pictures of
faces and places and ask subjects to attend one of them and then try to classify
the attended category using the previously trained classifier. To find the effect of
neurofeedback, trials are to be conducted twice, once with neurofeedback and
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once without the neurofeedback. The modality chosen for neurofeedback for
this experiment is visual because it is best suited for noisy rtfMRI environment
where auditory feedback is not ideal. The neurofeedback is such that depending
on the prediction of classifier at each TR, the picture of the predicted category in
the hybrid is enhanced while at the same time picture of the opposite category
faded out. This gives a visual indication to subjects of their task performance
on a TR-by-TR and trial-by-trial basis. This particular type of feedback was se-
lected because it is very natural and intuitive. One the most important aspects
of operant conditioning is that the feedback should induce minimal cognitive
load [132]. We believe that this type of feedback produces the least amount of
cognitive processing load compared to scenario if we had used traditional ther-
mometer type bar alongside the hybrid of two pictures. In that case, the subjects
would not only have to attend to the target picture in the hybrid but would
also need to simultaneously monitor the thermometer bar to figure out what the
classifier prediction was. This is increased cognitive load would have certainly
resulted in suboptimal reinforcement learning.

Pictures of famous faces and places were selected for the stimulus presentation
because previous studies have shown greater responses in face and place selective
regions for familiar faces and places compared to pictures of unfamiliar faces
and place, respectively [106,110]. These pictures were collected from the World
Wide Web. The dimensions of the picture were 450 x 450 pixels with a resolution
of 95.987 pixels/inch. The pictures were not corrected for luminous, contrast,
and subtended an angle of 8°. The next few sections will describe in detail how
these pictures were used in different phases of the experiment.

4.2.2.1 Training phase The data collected in this phase is used for training
a classifier which is used later on in the testing phase of the experiment. The
training phase consists of fifteen 30 s blocks of pictures of famous faces and
fifteen 30 s blocks of famous places with 12 s rest intervals interleaved in between
as shown in Figure 4.1.

Face Place Face Place Face Place Face Place
Block Block Block Block Block Block Block Block
o1 01 02 02 03 03 15 15

Figure 4.1 | Training phase. 15 face blocks and 15 place blocks were used in the training phase.
Each stimulation block was followed by a rest block represented by ‘R’ in the figure.

In each block, 14 pictures were shown and the first picture was repeated at some
random position in the block. Each picture in a block was presented for 1.5 sec-
onds follows by a 0.5 s fixation as shown in Figure 4.2). Subjects were instructed
to press a button on a button box with their right index finger when they saw the
first picture repeated in that block. This was just to make sure that participants
were actively engaged in the task throughout the training phase. All 14 pictures
in each block were unique and used nowhere else in the experiment. The du-
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Figure 4.2 | Structure of face, place and rest blocks in the training phase. In each face or
place block, 14 unique pictures were used and the first picture in each block was randomly repeated
somewhere in that block and the subjects were instructed to press a button on the button box when
they saw this repetition. Each picture was presented for 1.5 s followed by a fixation of 0.5 s. Each
stimulation block took 30 s to complete followed by the rest block. The rest block was 12 s long to
allow the hemodynamic activity to return to baseline.
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ration of the entire training block was 22 minutes (1 minute instruction + 21
minute task).

4.2.2.2 Classifier Training Phase The scans collected in the training phase
were shifted by 3 TRs (6 s) to account for the hemodynamic delay. After that, the
6 scans corresponding to rest periods between every consecutive face and place
block were also dropped. Then all fifteen scans in each of the face and place
blocks were used to train the classifier. The classifier training phase took only 30
seconds to complete during which time the subjects were shown the instructions
upcoming test phase.

Classifier The classifier in this experiment was an Elastic Net Logistic Regres-
sion classifier as implemented in the Donders Machine Learning Toolbox (DMLT).
The mixing parameter a parameter was fixed to 0.99. For the regularization pa-
rameter A, the whole regularization path was calculated with maximum number
of allowed iterations set to 100. Optimal setting of A was then computed using
nested cross-validation on 75% of the training data. For more details, please
refer to Chapter 2, Section 2.3.

4.2.2.3 Testing Phase The purpose of this section is to quantify whether
subjects can voluntarily control activation in spatially distinct cortical areas when
presented with two overlapping stimuli that could invoke activity in these areas.
Furthermore, this phase also investigates the effect of real-time fMRI neurofeed-
back. Therefore, the testing phase contains overlapping pictures of face and place
in two different conditions.

1. Feedback Condition: In this condition the classifier prediction is fed back
to subject on a TR by TR basis.

2. Non-Feedback Condition: In this condition the classifier prediction is not
fed back to subject. The 50/50 always remains at the same contrast through
out the duration of the trial.

Both conditions have an equal number of trials with face picture as target and
place picture as target and their order is random.

The basis set for the stimulus in the test phase contains 15 pairs, each containing
a picture of a famous face and a place. The choice of the face and place pair in the
test session is very crucial and therefore the face-place pairs for the test phase
was carefully handpicked. Ideally, in the 50/50 hybrid of the face and place,
both pictures should be equally salient, otherwise it will steer the user’s attention
towards the more prominent picture and hence bias the result towards one or
the other class. To ensure that this does not happen, we applied the Graph Based
Visual Saliency (GBVS) algorithm [41] on all the candidate 50/50 hybrid image
pairs. Then we observed the saliency maps of each pair as shown in Figure 4.3.
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Face

50 /50 Hybrid

Figure 4.3 | Face-place pair selection. Graph based visual saliency (GBVS) was used to select the
face-place pair such that in the 50/50 hybrid both the constituent pictures were equally salient. (a)
Original face and place picture alongside their 50/50 hybrid (b) GBVS map of the face, place and
hybrid pictures (3) GBVS map overlayed onto the original pictures. As can be in the saliency map of
the 50/50 hybrid, none of two pictures is dominating the other. Hence, this pair is suitable for the
experiment.

If a 50/50 hybrid had equal number of salient points in the face picture and an
equal number of salient points in the place picture, then the face-place pair would
be accepted otherwise, a new pair will be sought that fulfilled the above criteria.
In this way, 15 pairs of face place pictures were made, as shown in Figure 4.4.
From these fifteen pairs, 30 trials were constructed, 15 trials contained a face
picture as a target and the place picture as a non-target while the remaining 15
trials contained a place picture as a target and face picture as non-target. These
thirty trials were assigned to feedback blocks and also to non-feedback block. In
that way the entire test phase had 60 trials in total (see Figure 4.6).

The test phase was conducted in 12 mini-blocks (feedback mini-block and non-
feedback mini-block) each containing 5 trials as shown in Figure 4.6. In the feed-
back mini-blocks, the 50/50 hybrid was updated every TR (except the first two
TR’s due to pipeline delay) whereas in the non-feedback mini-blocks, it remained
stationary at the 50/50 hybrid at all times. The feedback and non-feedback mini-
blocks were interleaved and the ordering was counterbalanced across subjects
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Pair 9
Face : Rowan Atkinson
Place: Westminster Abbey| '}

Pair 10
Face : Jim Carey
Place: Eiffel Tower

Pair 11

Face : Charlie Chaplin

Place: Sydney Opera
House

Pair 4
Face : Steve Jobs
Place: White House

Pair 5
Face : Lady Diana
Place: Louvre

Pair 6

Face : Brad Pitt

Place: Twin Towers
(wTc)

Pair 7
Face : George Clooney
Place: The Pentagon 1 \

Pair 8
Face : Tom Hanks

Place: Leaning Tower of
Pisa

Pair 12
Face : Madonna
Place: Taj Mahal

Pair 13
Face : Tom Cruise
Place: Kremlin

Pair 14
Face : Robin Wiliams
Place: Brandenburg Gate

Pair 15
Face : Angelina Jolie
Place: Acropolis of Athens|

Figure 4.4 | Basis set of 15 picture pairs used in the test phase. These 15 picture pairs were used
in the test phase of the experiment. The first picture in each pair is a famous face and the second
picture is that of a famous landmark. The third pair is the 50/50 hybrid of the two pictures. Each
pair was used exactly four times in the experiment in these configurations: (1) Target = Face, Non-
Target = Place, Condition = Feedback (2) Target = Place, Non-Target = Face, Condition = Feedback
(3) Target = Face, Non-Target = Place, Condition = Non-feedback (4) Target = Place, Non-Target =
Face, Condition = Non-feedback. In this way, a total of 60 trials were obtained for the test phase.
Pictures used in these 15 pairs were not used in the training set.
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to pipeline
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Figure 4.5 | Structure of feedback and non-feedback trial in the test phase. Each trial in the
test phase began with a display of the cue pictures, one of a famous face and the other of a famous
place, followed by a brief fixation period. Then a 50/50 hybrid of the two picture was shown and
the subject was asked to attend only to the target picture while ignoring the non-target picture. In
non-feedback trials, nothing would happen to the hybrid, whereas in feedback trials, the hybrid was
updated every TR based on the prediction of the classifier. However, in the first two TRs in the
feedback block, highlighted in orange, the hybrid remained at 50/50 contrast. This is because in
real-time fMRI, when a stimuli is presented, the corresponding scan is generated one TR after it, and
it takes an additional one TR to preprocess it. So there is a delay of 2 TRs between presentation of
the stimulus and the prediction results being available. Due this lack of data in the first two TRs of
each trial, highlighted in orange, the feedback remains frozen to 50/50 contrast.
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Figure 4.6 | Test phase. (a) The arrangement of feedback and non-feedback trials for even-
numbered subjects. The test phase started with five feedback trials followed by five non-feedback
trials and so on. In this way 60 trials were conducted, 30 in feedback and 30 in the non-feedback
condition. Each condition had 15 trials in which a face was the target, and 15 trials in which a place
was the target. The order of these face and place trials was random in each condition. (b) For even
numbered subjects, each trial in the test phase began with a display of the non-target picture cue fol-
lowed by the target picture cue. This figure shows an example of one trial in the non-feedback block
highlighted in Figure a (c¢) For odd numbered subjects, the order of the feedback and non-feedback
blocks is reversed. (d) For odd numbered subjects, the order of the cue pictures is reversed. This
picture shows an example of a feedback trial highlighted in Figure c.
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(see Figure 4.6 b & d). For even subjects, each trial began with presenting of
the target cue for 1.75 s followed by presentation of the non-target cue for 1.75
s and a fixation period for 0.5 s. For odd subjects, the non-target cue was pre-
sented first. After presenting the cues, the 50/50 hybrid was shown. The hybrid
was updated every TR based on the prediction P of the classifier. If the classifier
prediction was above 0.5 then the target contrast was increased by 5%° and the
non-target decreased by 5%. If the classifier prediction was below 0.5 then the
place contrast was increased by 5% and the face contrast decreased by 5%. This
is represented mathematically in Equation 4.1.

0.5 if TR = 1,2
arg =4 Qarg_1+0.05 if TR = 3,4,...14 and P(face | TR-2) > P(place | TR-2)
argp—1 — 0.05 if TR = 3,4,...14 and P(face | TR-2) < P(place | TR-2)

4.1

HybridPictureyg = arg x Face Picture + (1 — apg) x Place Picture

For non-feedback trials, the blend always remained at 50/50 for all TRs, as shown
below:

HybridPicturesg = 0.5 x Face Picture + 0.5 x Place Picture

Note that different equations cause different behavior which in the end may af-
fect feedback vs non-feedback comparisons.

4.2.3 Experimental protocol

Before putting subjects in the scanner, they were thoroughly briefed about the
experiment. This was done to avoid any communication during real-time fMRI
run when the scanner noise is too high for two-way communication between
the subject and the experimenter. During this pre-screen briefing (see Appendix
F for more details), subjects were shown video recordings of all experimental
conditions and the task was verbally explained by the experimenter with the help
of these videos. Subjects were specifically instructed that the feedback would be
delayed by about 4 seconds due to technical reasons and that no matter what the
feedback was, they were to always think about the target picture without moving
their gaze from hybrid picture. Furthermore, they were allowed to close their
eyes during rest periods but were advised to open their eyes a few seconds before
this rest period was over. Subjects were instructed to adjust the viewing mirror

5A study [51] has shown that intermittent feedback is better than a continuous feedback. That is
why we decided to update the hybrid in a graded fashion every TR (2 seconds) by 5% rather than
slowly and continuously updating the hybrid within 2 seconds which would have made it very to
assess which direction the decoding was going.
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in the scanner before start of the experiment such that they were comfortably
viewing the center of the screen at all times. After subjects had adjusted the
mirror, they were strictly advised not to change its position through out the rest
of the duration of the experiment.

To keep participants motivated throughout the experiment, they were told that
if their performance (i.e. decoding accuracy) turned out to be higher than 95%,
they will receive 5 Euros for every percent above 95%. Once the experiment
was over, subjects was taken out of the scanner and decoding accuracy for their
experiment run was calculated. Based on the results, subjects were informed on
the spot if they would be receiving any reward or not.

4.2.4 MRI Acquisition parameters

Experiments were performed
at the Donders Institute MRI
lab using a Siemens MAGNE-
TOM Tim TRIO 3.0 T scan-
ner with a 32-channel head
coil. All functional images
were acquired using a sin-
gle shot gradient EPI se-
quence (TR/TE = 2000/30
ms; Flip angle = 75°; voxel
size = 3x3x3.3 mm; dis-
tance factor = 10%). 28
axial slices were acquired,
oriented typically at 35° to
the AC-PC (Anterior-Posterior
Commissure) line as shown
in Figure 4.7. A high-
resolution anatomical image
was acquired using an MP-

Figure 4.7 | Slice positioning. 28 axial slices were acquired
RAGE sequence (TE/TR = orientated typically at 35° from the AC-PC line. As slice # 1
3.03/2300 ms; 192 sagittal and 28 were to be masked out in the preprocessing later on,
slices, isotropic voxel size of tﬁese t\(/jvo slices covered no regions that were of interest in
the study.

1x1x1 mm).
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4.2.5 Real-time fMRI processing

All functional scans were acquired using the Integrated real-time fMRI pipeline
implementation. In this pipeline, the preprocessing, classification and synchro-
nization were all performed on a single PC. For more details about this pipeline
please refer to Chapter 5, Section 5.3. The functional scans acquired using this
pipeline were preprocessed before being used for classification. The preprocess-
ing stages used were:

Slice time correction Slice time correction with trilinear interpolation was used
to correct for differences in the acquisition time of various slices in each
scan.

Motion correction A three pass motion correction procedure was used. In the
first and second pass, the head motion was corrected for by the Siemens
scanner prospectively and retrospectively by PACE and MoCo, respectively.
In the third pass, retrospective motion correction was applied by the real-
time pipeline to remove any residual motion.

Boundary slice masking This average duration of this experiment is 70 min-
utes. With PACE enabled, only then a very small motion occurs and on
average only half of the first and last slice gets damaged due to motion.
Hence by masking the entire first and last slice, it was ensured that none
of the damaged voxels gets used in the training and test session.

Nuisance regressors removal Five regressors were used to remove scanner drifts,
offsets, and motion related activation.

Grey Matter masking The brain contains three distinct tissue types i.e. grey
matter, white matter and cerebral spinal fluid (CSF). Only the voxels in
grey matter respond to the experimental manipulation. The remanning
voxels show only random activity patterns. Grey matter masking removes
these white matter and CSF voxels. Because the brain contains more than
50% of white matter and CSE the size of the training set after applying
a grey matter mask is greatly reduced. This decreases the classifier train-
ing time dramatically. Furthermore, it improves the classifier performance
because a much cleaner dataset is available after applying this procedure.

4.2.6 Data Analysis

The preprocessed data used by the classifier during the experiment along with
the trained classifier and its predictions were all saved to disk and these were
used in all post-hoc analyses mentioned below.
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4.2.6.1 Decoding performance of each condition To calculate the de-
coding accuracy of each trial, it is first necessary to establish what a successful
and unsuccessful trial is. Because each trial contains 12 TRs, each TR decoded
individually as either as face or place and the result of the classification used to
adjust the mixture of the two pictures in the hybrid, therefore a trial is regarded
as successful if by the end of the these 12 scan, the hybrid has more than 50% of
the target picture and less than 50% of the non-target picture. In other words, if
by the end of a trial, the hybrid picture looks more like the target picture than its
regarded as a success otherwise the trial is a failure. This can be mathematically
written as:

12 12
B = Z logP(Target|Scan;) — Z logP(Non — Target|Scan;)
i=1 i=1

A trial was regarded as a success if 3 was greater than zero and a failure if § was
less than zero. Using this method, the accuracy of the trails for all participants
was calculated. A two-tailed t-test was then carried to find significant difference
between the decoding performance of the two conditions.

4.2.6.2 Decoding performance of different trial types in each condition
Because each condition, feedback and non-feedback, contains two types of trials
(one in which face picture is the target and the other in which place picture is
the target) therefore, the decoding performance analysis of feedback and non-
feedback conditions can be further split into the same analysis of the face and
place trials within that condition to get a more in-depth view. A two-tailed t-test
was then carried to find significant difference between the decoding performance
for these four trial types.

4.2.6.3 Decoding performance for stable and transition periods of BOLD
activity In almost all previous real-time fMRI studies, scans corresponding to
the transition period (i.e, the first 6 seconds on the HRF curve) were never
decoded on grounds that the BOLD signal in this transition period is not fully
mature (see [132] for a review of these studies). Our experiment specifically de-
coded these scans in the transition period to reduce the lag in the neurofeedback.
To asses the decoding performance in the transition period versus the stable pe-
riod that follow it, the decoding accuracy was calculated separately for first three
TRs corresponding to the first 6s of BOLD activity and for the remaining nine
TRs corresponding to 18s of stable BOLD activity. A two-tailed t-test was then
carried to find significant difference between the decoding performance of the
two conditions in transition and stable periods.

4.2.6.4 Decoding performance as a function of TR To find how decod-
ing performance evolves on a TR-by-TR basis, the decoding accuracy for each
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individual TR was calculated by finding the ratio of the correctly classified scans
and the total number of scans. This was done for each condition and also for
each trial type in these conditions.

4.2.6.5 Classification bias analysis Because the experiment contains an
equal number of face and place trials therefore, one expects that if the decoding
is unbiased then there will be equal number of scans (or TRs) classified as face
and place. To asses this, we calculated for each subject the total number of TRs
that were classified as face or place. A two-tailed t-test was then carried to find
significant difference between the number of TRs classified as face and place.

4.2.6.6 Region of interest analysis For region of interest (ROI) analysis,
Analyze4D (www.analyze4d.com) was used. ROIs for individual subjects were
defined using the locations of the non-zero classifier weights. Then a subject-
specific Anatomical Automatic Labeling (AAL) mask [127] was constructed by
warping the standard AAL mask in MNI to the subject space [6] using the in-
verse of the spatial transformation matrix obtained from the SPM8 (Wellcome
Department of Cognitive Neurology, Queens Square, London, UK) unified seg-
mentation normalization [7]. The ROIs were then labeled by overlaying the AAL
mask (in native space) over them. Then time courses for all the voxels in the
these ROIs were high-pass filtered (0.01 Hz) to remove very slow drifts and then
detrended before averaging the time courses of all voxels in each ROIL. Subse-
quently, percent signal change for each ROI was calculated using the mean of
the entire time series as the baseline. Then the average percent signal change
for each of the six different trials types' during the experiment was calculated.
The same procedure was repeated across the group and then the results across
all ROIs and conditions were averaged together across the group.

4.2.6.7 Classifier weights analysis The ROI analysis revealed the identity
of anatomical regions activated during the experiment and the percent signal
change analysis revealed if a particular brain region responded more strongly to
faces or places. To double check if this labeling was done correctly, the classifier
weights for these anatomical regions can be analyzed. Binary logistic regression
will always assign positive weights to face sensitive areas and negative weights
to place sensitive areas.

4.2.6.8 Voxel time course analysis To visually confirm if voxels were re-
sponding correctly to the particular experimental manipulation, their time courses
was analyzed using Analyze4D. Data from the preprocessed data buffer was used

IThese trials type are: 1. Face trials/blocks in training 2. Place trials/bloacks in training 3. Face trial
in Feedback condition 4. Place trials in feedback condition 5. Face trials in non-feedback condition
and 6. Place trials in non-feedback condition
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for plotting the time courses. Voxel used for plotting the time courses was located
by overlaying the classifier weights on top of the functional image and then man-
ually picking up a particular voxel. Time courses were detrended by a high-pass
filter (0.01 Hz) before plotting them. The design matrix was then overlayed to
correlate the time course with experimental condition. The design matrix was
shifted by 6s to account for the hemodynamic delay.

4.2.6.9 Classifier weight distribution plots Classifier weight distribution
plots were made to visualize which brain regions were used by the classifier
to train itself. First, a mask of the brain regions shown to be activated in the
ROI analysis, was extracted from the AAL template in MNI space. This mask was
then overlayed on the averaged anatomical image of the seven subjects using An-
alyze4D. This procedure yielded a 2D mosaic plot of the activated brain regions
overlayed on the anatomical image. To visualize the activated brain regions in
3D, BrainSuite [111,112] was used.

4.3 RESULTS

The aim of the this experiment was to see if the attended category could be
decoded in real-time when the subject is presented a hybrid of the target and
non-target picture. Furthermore, we also wanted to investigate the effect of
real-time fMRI neurofeedback on the decoding performance. The results of the
decoding performance for each condition (shown in Figure 4.8) reveals that the
average decoding accuracy for feedback condition and non-feedback condition is
79% and 78%, respectively. A paired samples t test failed to reveal a statistically
reliable difference between the feedback (M = 0.790, SD = 0.110) and non-
feedback (M = 0.776, SD = 0.116) conditions; t() = 0.420, p =.689, a = .05.

We hypothesized that the decoding performance for trials with face picture as
target will be the same as that of trials with place picture as target. By analyzing
the decoding performance for these two trial types (as shown in Figure 4.9), we
observe that the face trials and place trials in feedback condition were decoded
with 87% and 70%, respectively. A paired samples t test reveals no statistically
significant difference between the face trials (M = 0.876, SD = 0.156) and place
trials (M = 0.705, SD = 0.167) in the feedback condition; t = 1.915, p =.104,
a = .05. Similarly, the face trials and place trials in non-feedback condition were
decoded with 84% and 71%, respectively. No statistically reliable difference was
found between the face trials (M = 0.838, SD = 0.143) and place trials (M =
0.714, SD = 0.153) in the non-feedback condition; t) = 1.797, p = .122, a =
.05.

It was also predicted that above chance level decoding accuracy will be obtained
for scans in the transition period. Analysis of decoding performance for transi-
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Figure 4.8 | Accuracy of feedback and non-feedback trials for all subjects. The accuracy of the
feedback condition is higher than the non-feedback condition in the group average however, it is
not statistically significant. Note: The chance level accuracy is 50% and the error bars represent the
standard error of the mean (SEM).
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Figure 4.9 | Accuracy of face and place trials in feedback and non-feedback condition. The
accuracy of the face trials is higher than place trials in the group average however, its not statistically
significant. Note: The chance level accuracy is 50% and the error bars represent the standard error
of the mean (SEM).
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tion (Figure 4.10) and stable periods (Figure 4.11) of BOLD activity reveal that
scans in transition period were decoded with above chance level (67% for feed-
back condition and 56% for non-feedback condition). A paired samples t test
revealed a statistically significant difference between the feedback (M = 0.671,
SD = 0.137) and non-feedback condition (M = 0.561, SD = 0.142) in the transi-
tion period. The scans in stable period were decoded at higher accuracy (81% for
feedback condition and 80% for non-feedback condition) than scans in transition
period (compare Figures 4.11 and 4.10). No significant difference was found be-
tween the feedback (M = 0.814, SD = 0.096) and non-feedback condition (M =
0.800, SD = 0.109) in the stable period; t() = 0.420, p =.689, a = .05.

100 e eeeeennn

_| [ Feedback Condition
Non-Feedback Condition

Accuracy [%]

Sub 01 Sub 02 Sub 03 Sub 04 Sub 05 Sub 06 Sub 07 Average

Figure 4.10 | Accuracy of feedback and non-feedback trials in transition period. The accuracy
of the trials in the non-feedback condition is higher than in the feedback condition and is statistically
significant. Note: The chance level accuracy is 50% and the error bars represent the standard error
of the mean (SEM).

Furthermore, it was also hypothesized that the decoding performance will in-
crease with each scan in the transition but this performance increase will even-
tually level off in scans in stable period of BOLD response. By analyzing the
decoding performance as a function of TR (shown in Figure 4.12 and 4.13), we
can see that the decoding accuracy increases in the first six seconds of BOLD ac-
tivity in TR 1,2,3, and then levels off in the following eighteen seconds of BOLD
activity in the stable period in TR 4 to 12.

Moreover, it was hypothesized that the classification will be unbiased, i.e., the
number of scans classified as face or place during the experiment will be equal.
The classification bias analysis (see Figure 4.14) indicates that this is not the
case. There is bias towards the face category, in other words more scans are clas-
sified as face than place. A paired samples t test shows a statistically significant
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Figure 4.11 | Accuracy of feedback and non-feedback trials in stable period. The accuracy of the
trials in feedback condition is higher than in non-feedback condition but is not statistically significant.
Note: The chance level accuracy is 50% and the error bars represent the standard error of the mean

(SEM).
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Figure 4.12 | Accuracy as a function of TR for feedback and non-feedback conditions. (Note:
The chance level performance is 50%)
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Figure 4.13 | Accuracy as a function of TR for place and face trials in feedback and non-
feedback conditions. (Note: The chance level performance is 50%)

difference between scans classified as face (M = 412.71, SD = 48.124) and place
(M = 307.29, SD = 48.124); t) = 2.898, p = .027, a = .027.
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Figure 4.14 | Classifier bias. There is significant difference between the number of the scans classi-
fied as face and place. Note: The ground truth number of face and place scans is 360 each. The error
bars represent the standard error of the mean (SEM).

The region of interest analysis indicates that 31 distinct brain regions were ac-
tivated across all the subjects as shown in Figure 4.15. Any region that wasn’t
activated in more than two subjects was dropped from the further analysis leav-
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ing only nine brain regions as shown in Figure 4.16 and 4.17. The areas include
bilateral fusiform and lingual gyrus, right parahippocampal gyrus, left and right
inferior occipital lobes, and right middle and supplementary temporal lobes. Per-
cent signal change in these areas were calculated and a region was labeled as
either face selective or place selective depending on how strongly it responded to
the face and place blocks in the training session. If the percent signal change was
greater in the face block of the training session than the place blocks, then the
region was categorized as a face selective region else as a place selective region.
Right fusiform gyrus, inferior occipital lobes(left and right), and right middle and
supplementary temporal lobes responded strongly to faces and hence labeled as
face sensitive regions. Left fusiform gyrus, lingual gyrus (left and right) and right
parahippocampal gyrus were more responsive to the place stimuli and hence la-
beled as place selective regions. The results of the percent change analysis are
shown in Figures 4.18 and 4.19.

I Face selective region
I Place selective region
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Figure 4.15 | All brain regions activated across subjects. Thirty-one distinct brain regions were
activated across subjects. The regions in red showed more percent signal change in the training
session compared to place blocks. The brain regions in blue showed more percent signal change in
the training session compared to face blocks.

It was expected that classifier weights will be positive for face selective areas and
negative for place selective areas. The classifier weights analysis confirms that
this was actually the case. Face selective areas such as right fusiform gyrus, infe-
rior occipital lobes(left and right), and right middle and supplementary temporal
lobes were assigned positive weights. Place selective areas such as left fusiform
gyrus, lingual gyrus (left and right) and right parahippocampal gyrus were all
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Figure 4.16 | All brain regions activated for more than two subjects. Brain regions that were
activated across three or more subjects.
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Figure 4.17 | Brain region activated during the experiment. (a) Brain regions that were activated
during the experiment overlayed onto the averaged brain of all seven subjects in MNI space. (b)
Zoomed version of the slice highlighted in (a) (c¢) 3D view of the brain regions activated during the
experiment
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Figure 4.18 | Region of interest (ROI) analysis. Percent signal change across five different brain
region averaged across the group for six distinct conditions in the experiment. These regions respond
more strongly to the face pictures than place pictures. The error bars represent the standard error of
the mean (SEM).
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Figure 4.19 | Region of interest (ROI) analysis. Percent signal change across four different brain
region averaged for the group for six distinct conditions in the experiment. These regions respond
more strongly to the place pictures than face pictures. The error bars represent the standard error of
the mean (SEM).
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assigned negative weights. The classifier weights averaged across all subjects for
all the brain regions is shown in Figure 4.20.
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Figure 4.20 | Classifier weights. Average classifier weights in all activated brain regions across all
subjects. Face selective areas have positive weights and the place selective areas have a negative
weight assigned to them. The error bars represent the standard error of the mean (SEM).

To visually confirm that the experimental manipulation was having the desired
effect on voxels, a time course analysis was done on voxels selected by the clas-
sifier for training. Figure 4.21 shows the time courses for two voxels, one in
the face selective region and the other in the place selective region. The figure
confirms that voxel in face selective regions is responding more strongly to face
conditions and the voxel in the place selective region is responding more strongly
the place conditions.
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Figure 4.21 | Voxel time course. (a) A voxel (highlighted in white) in the face selective region used
by the classifier for training (b) Time course of voxel in (a) (c) A voxel (highlighted in white) in the
place selective region used by the classifier for training (d) Time course of voxel in (c).
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4.4 DISCUSSION

The experiment was conducted to find the attended stimulus category can be
decoded in real-time when two competing stimuli are presented. Furthermore,
it was investigated if real-time fMRI neurofeedback of scan-by-scan classification
results had any impact on the task performance. The results indicate the at-
tended stimulus can be decoded in real-time with an average accuracy of 78.5%.
The results also show the real-time neurofeedback has no influence on the de-
coding accuracy. The decoding accuracy for trials with and without feedback was
79% and 78%, respectively and this difference was found to be statistically in-
significant. This is is contrast to our hypothesis that feedback will help drive the
attention towards the target category, thereby resulting in higher decoding accu-
racies for trials with feedback compared to trial without feedback. By looking at
the performance in feedback and non-feedback trials on an individual level (see
Figure 4.8), it can be seen that four participants performed actually better on
non-feedback trials than on feedback trials. One possible reasons for this might
be that once classifier prediction in feedback trials starts to go wrong (i.e in the
opposite direction to what the subjects are thinking about), then this wrong pre-
diction captures their attention and these subjects just could not focus on paying
attention to the target concept which, in turn, worsens the prediction in the up-
coming scans. Hence an avalanche effect is seen for these subject in feedback
trials where an initial misclassification snowballs to all the rest of the scans of
the trial being misclassified as well. To find if there really is such an effect, an
additional analysis was performed by finding the largest continuous streak of
consecutive similar classification in each trial for each condition. The results
obtained are shown in Figure 4.22. The results indicate that there are longer
streaks of consecutive similar classifications in feedback condition compared to
non-feedback condition indicating that there is a snowball effect, where one clas-
sification triggers a stream of similar classifications in a trial (see the snowball
effect in videos of feedback and non-feedback condition in Appendix H). This
also gives credence to our hypothesis that attention will shift between target and
non-target picture in trials with no feedback whereas, in trials with feedback, the
attention will remain glued to the target picture for longer durations of time.

The snow ball effect could have been reduced with a thermometer bar type feed-
back alongside a static display of the 50/50 hybrid picture. But this thermometer
type of feedback is riddled with some unique problems of its own. For example,
it would have put huge cognitive load on subjects because they would not only
need to attend to the target picture in the hybrid but would also need to covertly
monitor the feedback to assess how good or otherwise they are doing in a trial.
Furthermore, because the prediction could go in either direction, towards the
face or place which would have needed to be color coded in the thermometer
bar. For instance, red color for when prediction is going in the non-target cat-
egory direction and green color for when the prediction is going in the target
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category direction. Thus the subjects would have to remember what these two
colors stood for, making an already difficult task, even more difficult. Therefore,
the type of feedback used in the experiment was the most optimal one with least
amount of cognitive load making it suitable for reinforcement learning. The du-
ration of feedback was chosen to be 12 TR or 24 seconds which might have been
too short for any significant reinforcement learning. Previous real-time studies
have used trial durations ranging from 15s to 60s (see [132] for a review). Our
particular choice of 24 s of neurofeedback was a compromise between number
of trials and experiment duration. This is because we observed in our previous
experiment (as described in Chapter 3) that subjects got exhausted as the scan-
ning session was just too long and tiring. Therefore, in this experiment 24 s was
chosen because any longer neurofeedback would have resulted in either longer
experiment duration or less number of trials, none of which is what we desired.
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Figure 4.22 | Snow ball effect of feedback. The graph was obtained by finding the largest contin-
uous streaks of similar classification in each trials and then averaging those for all trials in feedback
and non-feedback condition.

The accuracy of the face and place trials in the feedback and non-feedback con-
ditions (see Figure 4.9) shows that that face trials are classified with higher accu-
racy than place trials. This is contrast to our hypothesis that the decoding accu-
racy will be independent of the target category. Although, we observed saliency
maps of the 50/50 hybrid to ensure that none of the two pictures, the face or the
place, in a selected pair is more salient than other, the possibility that one picture
was more salient than the other can not be completely ruled out and hence the
observed bias towards one category. Another possible reason could be that faces
are more easier to imagine and focus on as compared to pictures of places and
hence a preference towards the face category. The same trend is found in the
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total number of scans that were classified as face and place. Significantly more
scans were classified as face than as place.

We had hypothesized that above chance level decoding accuracies would be ob-
tained for scans in the transition period. The results seems to confirm that hy-
pothesis. Thus our results confirm the finding of the LaConte et al. that the
transition periods of the BOLD activity contains a reliable structure that can be
decoded with above chance level accuracy [67]. We have therefore shown for
the first time that prediction from the scans in the transition period can be used
in real-time fMRI to reduce the fRMI neurofeedback delay by as much as 6s.
Apart from that, it was also found that the decoding accuracy for feedback con-
dition was significantly higher than the non-feedback condition in this transition
period. This difference seem to be pronounced in the third TR of the place trials
(see Figure 4.13). However, the exact cause of this observation is still unknown.

The ROI analysis revealed nine regions that responded strongly to the experimen-
tal manipulation. Among these region is the left fusiform gyrus. The left fusiform
is usually associated with reading and word processing [23, 46,76,102]. More
recently however, this area has also been suggested to be sensitive to the conjunc-
tion of object and background scene information [35]. This view has also been
strengthened by invasive studies in primates that also pointed to the presence of
neurons which are responsive to conjunction of object features [10,15]. Because
the pictures of famous places used in our stimulus set contained not only objects
but also a wide variety of backgrounds (see Figure 4.23 (a)), that is why left
fusiform is showing more activity for the place blocks then for face blocks. The
pictures used in face blocks rarely had objects in them. Only a few face pictures
had necklaces, earrings, glasses etc. (see Figure 4.23 (b)). The right fusiform

Figure 4.23 | Some examples of pictures of famous places and faces. a. The picture of place
contains objects (man made structures) and background scenes and surroundings b. The pictures of
faces rarely contained any objects in them except for a few items such as earrings glasses etc.

and the left parahippocampal area were also selected by the classifier during the
experiment. The right fusiform showed preference for the face blocks and the
left parahippocampal gyrus showed a preference for place blocks. These two re-
gions have been implicated in many studies to be responsible for the processing
of faces and place, respectively [3,4,26,53,77]. So the involvement of these two
regions comes as no surprise. Two other regions that were also selected by the
classifier in the study are right medial temporal lobe and right supplementary
temporal lobe. A study by Tempini et al. [37] investigated the effect of fame
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(famous relative to non-famous) on the activations elicited by pictures of faces
and buildings. Their findings show that the category-specific activations in the
fusiform and parahippocampal/lingual areas were not modulated by fame but in
the left anterior middle temporal gyrus there is an effect of fame that is common
to faces and buildings. Their findings also show that this effect is stronger in the
left anterior middle temporal gyrus compared to the right anterior middle tem-
poral gyrus. Our findings are contrary to this study because we find that right
temporal gyrus is activated more compared to the left temporal gyrus. However
this can be explained by the fact that semantic information can be retrieved by
activation of either the left or the right anterior temporal cortex [37]. Further-
more, in our study the right temporal gyrus shows a preference for famous faces
but not for famous places. This could be because many of the supposedly famous
landmarks used in the stimulus set were not as familiar to the subjects as ex-
pected. Most participants reported that although they could recognize many of
the famous faces but they could not identify many of the pictures of the famous
buildings. Some of them are shown in Figure 4.24.

Figure 4.24 | Example pictures of supposedly famous places unfamiliar to most of the subjects.
The figure shows pictures famous place that most subjects reported they were unfamiliar with.

Both left and right inferior occipital gyri were also activated in the experiment
and both showed more activations for the face blocks. This region contains the
occipital face area (OFA). The OFA is spatially adjacent to the FFA and prefer-
entially represents the parts of face, such as eyes, nose, and mouth [72,96,97].
OFA is an essential component of the cortical face perception network and it rep-
resents face parts prior to subsequent processing of more complex facial aspects
in higher face-selective cortical regions.

4.5 CONCLUSION

Our results show that it is possible for subjects to voluntarily attend to one of
two simultaneously presented stimuli. This was examined by prediction of the
attended stimulus category in a real-time fMRI setting. One of the most inter-
esting findings is that above chance level decoding accuracies were obtained for
TRs in the transition period of the hemodynamic response which until now had
been ignored in almost all real-time fMRI studies. Our results show that we can
make the real-time neurofeedback more realistic by classifying the BOLD signal
in the transition periods. However, our experiment still had a delay of 4 seconds
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between presenting the stimulus and its corresponding neurofeedback being pre-
sented to the subject. However, this pipeline delay can be reduced by about 50%
in any future experiments. This is due to the fact that the regions of interest dis-
covered in this study are close enough that they can all the be covered with 14
slices (Voxel Size = 3 x 3 x 3.3 mm) with a TR of 1 second. With new rapid paral-
lel imaging protocols, this delay can be reduced even further. The preprocessing
delay can be reduced to approximately 0.3s by sampling for scans at non-TR
intervals and designing the stimulus presentation accordingly.

The study did not find any difference in the decoding accuracies obtained for
conditions with and without feedback. This could be because the trials were
too short and too few. Future studies should not use both conditions on same
subjects. Instead one condition should be applied on one group of subjects and
the other on another group. This way more trials or longer length trials could be
accommodated in the same experiment duration. Furthermore, training and test-
ing could be conducted on separate days thereby, giving an opportunity to could
even more trials. However, in that case care would need to taken to ensure that
images functional images in both sessions align perfectly. For that purpose an
AAScout sequence should be used before the real-time fMRI run of the first ses-
sion to make sure that the exact same slice prescription is used for the preceding
sessions as well.

Although, the current experiment shows that it is possible to decode between
category information, it would be interesting to see if the same can be done for
within category information. For example, presenting hybrid of two face pictures
and decoded the attended face. A high resolution fMRI study [66] on 3T scanner
revealed that response patterns elicited by individual face images were distinct in
the anterior area but not in FFA. This study suggests that the FFA merely detects
faces but anterior area is more engaged in face identification. Using the same
experimental setup which we described in this chapter but with high resolution
imaging on a higher strength scanner (7T or 9T), it might be possible to decode
the within category information in real-time.
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HARDWARE/SOFTWARE
DEVELOPMENT

fully execute a real-time experiment, was continually being developed

and refined. In this chapter, we will first describe the Distributed real-time
fMRI pipeline which was used to execute the first experiment. We will identify
the flaws in its design and describe its successor, the Integrated real-time fMRI
pipeline, which was used to execute the second experiment. Lastly, we will de-
scribe Analyze4D, a software tool developed specifically for efficient offline anal-
ysis of real-time fMRI data.

D URING the entire course of this study, the architecture required to success-

5.1 DISTRIBUTED REAL-TIME FMRI PIPELINE

This pipeline is composed of four components, each having a distinct function:

1. Scanner Module Scanner module directly controls the MRI scanner. Any
fMRI data acquired during the experiment first becomes available on this
computer. Because scanner module is a very specialized computer, dedi-

Real-time fMRI Decoding: Reading Minds Using Brain Imaging. 81
Copyright (¢) 2012 University of Twente & Radboud University, Nijmegen
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cated solely for controlling the scanner, therefore if fMRI data is to be used
during the experiment, it must be transferred to another PC before it can
be used.

On SIEMENS scanners, as soon as the last slice of a volume gets acquired,
the raw pixel data of acquired volume gets written to a folder in the drive
of the scanner console. A custom designed software, GUI Streamer, con-
stantly polls this folder for any new files and as soon as a new file is de-
tected, its contents are read and streamed over the ethernet along with the
information about the fMRI protocol which was used to acquire the scan.
The protocol information helps the remote computer which receives the
streaming data to reconstruct the volume.

. Preprocessing Module The preprocessing module is a computer on the

network that receives the raw scans and stores them in a raw data buffer
(FieldTrip buffer). The scans in this buffer are then read one by one by
the preprocessing pipeline which applies dummy scan rejection, motion
correction, slice time correction, brain extraction, spatial smoothing, and
online GLM for nuisance signal removal. The preprocessed scans are then
stored in the preprocessed data buffer along with the scan numbers sent
by the synchronization module. The data from preprocessed data buffer is
then passed to BCI module.

. BCI Module The BCI module has the responsibility to receive the prepro-

cessed streaming data from the preprocessing module and use it in a real
time BCI loop. In our setup, we used BrainStream toolbox to control the
BCI loop. This module has various responsibilities as mentioned below:

o read streaming data from the preprocessing module
e extract features
e classify features

e generate stimulus based on the result of the classification (dynamic
adaptive stimulus generation)

The stimulus generated in this module is sent to the Synchronization mod-
ule. This is because in our setup, this computer is connected to the scanner
projector.

. Synchronization Module Whenever a new functional scan is acquired, the

scanner generates a TTL pulse. These TTL pulse are received by BITSI®,
converted to a serial format and sent to the COM7 port of the synchro-
nization module. The serial event corresponding to each TTL pulse is then
used to increment a counter in a C application. The counter, therefore,

6A custom designed hardware which, among many other things, converts TTL pulses to serial format.
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represents the current scan number in the functional run. These scan num-
bers are then sent to the preprocessing buffer in the preprocessing module
where they are saved along with the corresponding preprocessed scan.

The module also receives a ‘RESET’ message on its UDP port # 1990 from
the GUIL_Streamer tool at the start of each functional run. This resets the
counter. It is imperative that the counter is reset at the start of each new
functional run, otherwise the FieldTrip events in the preprocessed data will
not refer to the correct data.

The synchronization module also serves another purpose. It’s monitor is
used to display the stimulus to the experimenter.

5.2 SHORTCOMINGS OF DISTRIBUTED REAL-TIME FMRI PIPELINE

Because this pipeline contains four different PCs, each of which needs to be
started in a specific order, therefore, this pipeline was prone to human error
on part of the experimenter. If the experimenter made any mistake in the startup
sequence, then everything needed to be manually stopped and the whole startup
procedure had to be repeated all over again. Considering, that each startup at-
tempt took approximately ten minutes to complete, any restart of the pipeline
would translate into not only a loss of scanner time, but also result in subject
fatigue and frustration as the subject is in the scanner during all that time.

Furthermore, in this pipeline Brain Extraction is used to remove the irrelevant
skull voxel. But there still remain the white matter and cerebral spinal fluid
(CSF) voxels that Brain Extraction does not remove. If these voxels are removed,
then the training set and the training time can be dramatically reduced.

One major flaw of this pipeline is that it is not very portable. Apart from using
four different PC, it also uses some hardware that is very specific to Donders
Institute. For example, the BITSI which converts TTL pulses from scanner to
serial is something very specific to Donders Institute and might not be available
at other research labs. If other institutes want to use this pipeline, they will
need to buy this large piece of hardware, which is not ideal, considering that it
performs a trivial task of converting TTL pulses to serial format. Furthermore,
modern desktop PCs and laptops do not have a legacy serial port anymore.

5.3 INTEGRATED REAL-TIME FMRI PIPELINE

To rectify the shortcomings in the distributed real-time pipeline, the integrated
real-time fMRI pipeline was developed. It provides the following improvements:

1. Automated operation of the real-time pipeline In this integrated real-
time pipeline, the preprocessing module and the synchronization module
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Figure 5.1 | Distributed real-time fMRI pipeline. Contains four different modules each performing
a specific task in the pipeline. The scanner module acquires the functional data and forwards it in
real time to the preprocessing module, where the fMRI data is preprocessed one scan at a time. The
preprocessed scan is then received by the BCI module where feature extraction and classification
is done. Based on the result of the classification, the stimulus (and neurofeedback) is generated,
which is sent to the scanner projector and also to the monitor of the synchronization module so that
the experimenter can view it. The synchronization module receives scanner triggers through BITSI,
converts them into FieldTrip events and passes them on to the preprocessing module.



ANALYZE4D 85

are integrated into the BCI module, and hence the name. The whole pro-
cess of starting the real-time pipeline has been automated in the BCI mod-
ule. With just a click of a button, the real-time experiment can be started or
stopped, giving beginners and novice users the ability to run their real-time
experiment without in-depth knowledge of how it all works.

2. Grey Matter Masking As an improvement over Brain Extraction, Grey
Matter Masking is introduced in this pipeline’. Grey matter masking uses
anatomical scans to extract a grey matter mask. This mask is then applied
to all functional scans to remove the white matter and CSF voxels. This
reduces the size of the training set and also decreases the classifier train-
ing time. The anatomical scans that are collected on the scanner module,
cannot be sent to PC having dynamically assigned IP address. Since in our
implementation, the BCI module has a dynamically assigned IP address,
therefore, the anatomical scans are first sent to a data transfer PC which
has a static IP address. From this PC, the anatomical scans are forwarded
to the BCI module. However, users can completely bypass the data transfer
PC by assigning a static IP to the BCI module computer and transferring
the anatomical scan directly from the scanner module to the BCI module.

3. Portability In this pipeline, the BITSI has been replaced by a low cost but-
ton box designed around Arduino. It receives the TTL pulses directly from
the scanner and converts it serial format. This serial data can then be re-
ceived using a USB port rather than a legacy serial port. This entire solution
makes the real-time pipeline highly portable.

Apart from the these much of the pipeline remains the same as the distributed
version.

5.4 ANALYZE4D

Visualizing voxel time courses can be a very effective tool in gaining better under-
standing of how brain is responding to a particular experimental manipulation.
By analyzing voxel time course, one can visually verify if the stimulus is eliciting
the right activity patterns in the brain.

Although most existing neuroimaging analysis softwares can do very sophisti-
cated statistical measures on fMRI data, but when it comes to just visualizing
the raw voxel time course, these software leave much to be desired. Analyze4D
(www.analyze4d.com) is designed to read almost any data format and is there-
fore, meant to complement any of the existing neuroimaging softwares that an
experimenter might be using for fMRI data analysis. So whether they are using

7Brain Extraction is still available in this pipeline for users who don’t want to use grey matter masking
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Figure 5.2 | Integrated real-time fMRI pipeline. In this pipeline, the preprocessing and the syn-
chronization modules are integrated into the BCI module. The start up sequence is now automated in
the BCI module. With just a click of button the whole pipeline can be started or stopped. The BITSI
has been replaced by a button-box which connects with the BCI module using a USB port making this
implementation more general and portable. Grey matter masking has also been introduced in this
pipeline to filter out the grey matter voxels from white mater,CSE and skull voxels. The anatomical
scans required to extract the grey matter mask are first passed from scanner module to a nearby
computer with static IP address and from there forwarded to the BCI module, where the mask is

automatically extracted and applied to the functional data.
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SPM, FSL, BrainVoyager or AFNI, they can start using Analyze4D to give your
analysis a fourth dimension, the dimension of time.

Analyze4D is a comprehensive tool for easy and intuitive visualization and time
course analysis of functional Magnetic Resonance Imaging (fMRI) data. It has a
plethora of tools to select Regions of Interest (ROI) and Volume of Interest (VOI)
and analyze their time courses. Being completely GUI driven, no programming
whatsoever, is needed to use it. Coupled with its ability to read virtually any
neuroimaging data format, it enables anyone involved with fMRI research to use
this tool for analyzing fMRI data at any stage in their analysis.

File Mask ROl Stats Motion Regressors Utilities Help a
Spatio Temporal Analysis.

Chonso ROl scectan eted
[ravemsams
W change ROI Color
& ceenatetoredepisia
PR p——
Customize Mask Color
= @D
e = —_
M Show masked voxels only e L Costontzs Wassio G Coor u

Brightness Vale 1801

I e
Vale [0
siecoomer [

' Display Dual Cursors.
vy | VR A B T2

Figure 5.3 | A screenshot of Analyze4D. Analyze4D is tool for fMRI visualization and voxel time
time course analysis. The tool provides the ability to interactively zoom and pan into the MRI data,
select the region of interests and plot the time courses of the voxels in these regions of interests.
Additionally, the design matrix can be overlayed onto the time course. These are just some of the
many features of Analyze4D.

5.4.1 Features of Analyze4D

Analyze4D has the following abilities:

e Supports NIFTI, Analyze 7.5, BRIK, MINC, Brainvoyager, DICOM, Matlab
and Donders Real-time data formats

e Visulaize functional and anatomical data

e Overlay t-maps, contrast maps, and beta maps on functional data
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e Visualize the data scan-by-scan in three different mosaics i.e. Sagittal,
Coronal, and axial

e Play a movie of all your functional scans
e Use intuitive zoom and pan to home in on a particular brain region or voxel
e Apply sophisticated masks during ROI and VOI analysis

e Apply interactive thresholding to imported masks such as the grey matter
mask

e Apply masking from three different atlases including Anatomical Automatic
Labeling (AAL) atlas to accurately perform ROI analysis on a particular
anatomical region in the brain

e Overlay design matrix over voxel time courses
e Detrend the voxel time courses before plotting them

e Calculate percent signal change in the defined ROI for all the experimental
conditions

o Intuitively zoom and pan the voxel time courses
e Analyze subject head motion using subtraction plots

e Import, visualize, and interact with SPM motion regressors

5.5 ANALYZEA4D RT

Although the current implementation of Analyzed4D can only be used offline, a
real-time version, Analyzed4D RT, is currently being developed. This is because
the current real-time fMRI pipeline has little data visualization capabilities to
offer. An experimenter cannot visualize or interact with the real-time fMRI data
while it is being acquired during the experiment. The visualization capabilities of
Analyze4D RT can be used to complement the existing real-time fMRI pipelines.
Using Analyze4D, experimenters will be able to visualize a subject’s head motion,
check the real-time data for scanner spikes, perform GLM on scans while they are
being acquired, and select and confine analysis to the regions of interests.

5.6 SIGNIFICANCE OF DEVELOPED HARDWARE/SOFTWARE

When this project was started, the real-time fMRI was just a bare bone imple-
mentation and had documentation that left much to be desired in terms of ease
of use by complete novices. By undertaking this project, we refined that bare
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bone implementation to a polished product that is now both easy to understand
and design experiments with. The real-time fMRI architecture developed in this
project will be used not only at Donders Institute but can be used at almost any
other research institute for running real-time fMRI experiments as well. More-
over, all the tools developed are open source and free of cost unlike our competi-
tor real-time implementations like Turbo BrainVoyager. Our pipeline is designed
completely around MATLAB. Whether its dynamic stimulus generation or real-
time data processing or machine learning, everything one would ever need to
build a complete real-time fMRI experiment can be designed in out MATLAB-
based tools, thereby enabling a user to design an entire experiment in just one
easy to use language. With its open architecture anyone can modify our real-time
fMRI implementation to meet their own specific needs.

With Analyze4D, researchers now have a tool that can help them in easy visual-
ization and ROI analysis of fMRI and rtfMRI data. The softwares provides some
of the same functionalities that are provided by commercial and proprietary soft-
wares like BrainVoyager and MIT GabLab Timeseries Explorer, respectively. Being
free and completely open source means anyone can adapt this tool for their own
particular requirements. Analyzed4D which emerged as a venture from this the-
sis is now a Bonus deliverable for BrainGain work package 6. With continued
development and improvements, our vision is to make this tool a leader in fMRI
visualization and ROI analysis tools.






CHAPTER 6

SUMMARY AND GENERAL
DISCUSSION

Our results showed that the perceived letters can be decoded but with a very

low accuracy. We also investigated if a classifier trained on perceived stimuli
can be used to decode imagined percepts. The results obtained suggest that it
is rather difficult to get good reconstruction accuracy for imagined stimuli with
classifier trained on perceived stimuli. Moreover, the experiment also investi-
gated the effect of feedback on decoding performance. It was found that the per-
formance was worse in the feedback conditions compared to the non-feedback
conditions that preceded it. Some critical mistakes were made in the experiment
design that might have contributed to rather low reconstruction accuracy. First
the trials in the four conditions were not intermixed but instead were performed
in four big blocks. In future designs of the experiment, the conditions should be
mixed and the trial order randomized in order to rule out effect of scanner drift
and other artifacts. Furthermore, the real-time neurofeedback in this experiment
was not strictly real time. There was a delay of 6 TRs (9s) between the start of
the task and the subject seeing the result. This is a huge amount of delay which
made the neurofeedback rather useless and redundant, to say the least. More-

IN chapter 3, we investigated if visual perception can be decoded in real time.
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over, the training and testing were performed on the grey matter, CSE and white
matter voxels, when only the voxels in grey matter carry any meaningful infor-
mation. In future studies, grey matter mask should be applied to confine analysis
to only grey matter voxels. An even better option would be to confine analysis to
only the retinotopically organized areas of the visual cortex by conducting an ad-
ditional localizer experiment before the start of each experiment. Moreover, the
duration of the stimulus in the training was too long which caused the bleeding
of activations from activated voxels to neighboring non-activated voxels, thereby
worsening the spatial localization of fMRI which was a crucial pre-requisite for
this experiment.

In chapter 4, we investigated if subjects can voluntarily attend to one of the two
competing overlapping stimuli and if this attended stimulus can be decoded in
real time. Furthermore, the effect of neurofeedback on subject performance was
also investigated. The lessons learned during the previous experiment were ap-
plied in the design of this experiment. For example, instead of performing each
condition in one big block, the conditions were intermixed and the trial random-
ized within and across subjects. Furthermore, the scans on the transition period
were also classified which reduced the feedback delay from 9s (in the previous
experiment) to 4s in this experiment. The feedback was still quasi real (i.e. it
had still the pipeline delay of 4s) time but still it was a huge improvement over
the last experiment. The result of this experiment indicated that it is possible to
decode the attended stimuli in real time with a very high accuracy. Trials in feed-
back condition were decoded with same accuracy non-feedback condition. The
fact that feedback and non-feedback trials were intermixed might have resulted
in small learning effect compared to the scenario if the two conditions were con-
ducted in two big blocks. Further studies should be carried out to investigate if
any learning effect is produced in this experiment with neurofeedback. More-
over, the results also indicate that there is a snowball effect where feedback of
one classification results in a series of subsequent similar classifications.

In chapter 5, we described the hardware and software tools developed during
this study. However, there is still a room for further improvement. For instance,
in future experiments that might use rapid parallel imagining protocols such as
3D Flash or SENSE-EPI, the rtfRMI pipeline would need modification. Further-
more, the current pipelines provide no data visualization capabilities to the ex-
perimenter while the experiment is still running. To counter this shortcoming,
an online implementation of Analyze4D can be used in future experiments to
complement the existing rtfMRI pipeline with the visualization and analysis ca-
pabilities of Analyze4D.



FUTURE OF REAL-TIME FMRI 93

6.1 FUTURE OF REAL-TIME FMRI

Real-time fMRI, though still in it’s infancy, has a a great future ahead of it. Every
year more and more research labs are getting involved in real-time fMRI research
and some very promising developments have been made already in mind read-
ing [117] and therapeutic interventions [18, 39, 40, 42, 69, 70] using real-time
fMRI. However, these are all just experimental ventures and there is still no com-
mercially viable application of real-time fMRI. The reason being the high cost of
running an fMRI scanner and a lack of portability. In near future, we might see
a shift towards the use of real-time fMRI on cheap and portable MRI scanners
such as those currently being developed at UC Berkeley [48] and Fraunhofer
Institute [130]. For now though, for any consumer application, MRI scanners
would need to be replaced by currently available mobile technology such fNIRS-
a portable technique that is also based on the hemodynamic brain response and
which should be sensitive enough for any of the applications mentioned above.

Furthermore, in future there will be a shift towards two-brain studies using hy-
perscanning fMRI(hfMRI). The term ‘Hyperscan’ embodies both the hardware
and the software necessary to link two or more magnetic resonance scanners
through the internet. Hyperscanning allows to conduct human behavioral exper-
iments in which participants can interact with each other while functional MRI is
acquired in synchrony with the behavioral interactions [84]. The advent of hy-
perscanning is a major breakthrough because many aspects of social behavior are
not easily understood by looking at just one brain. For example, can one try to
understand a bitter argument by only recording what one person said? Of course
not. Hyperscanning enables us to see both sides of the equation and sheds light
on behaviors that are a property of shared social behavior. A disagreement in
bargaining, for example, is a shared activity that can be best understood by see-
ing the joint activity in two brains at the same time. Hyperscanning has already
proven valuable in discovering agent-specific responses in the cingulate cortex
during economic exchanges [124] and in finding the neural correlates of repu-
tation and trust in a two-person economic exchange [55]. In future we will see
more of such research studies investigating how our brains behave in complex
social and economic interactions.
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APPENDIX A

Experiment 1 - Informed consent form

Please consider this information carefully before deciding whether to participate
in this research.

Purpose of the research: The experiment uses fMRI to predict what you see and
imagine. Furthermore, this prediction will be done in real time, which in simple
terms means that you will be able to see if the computer makes correct or wrong
prediction.

What you will do in this research: In the first 30 minutes of the experiment, we
will brief you about the whole experiment. Then we will put you in the scanner
and start the experiment. For the next 45 minutes, you will see various random
flickering patterns on a screen inside the MRI scanner. During this time, the
computer trains itself and learns your brain activity. This training part would be
extremely boring for you because you would constantly need to stare at flickering
patterns on the screen, but you needn’t worry because the fun part is just about
to begin.

Once the computer is trained, it can start predicting your visual perception. You
will see an alphabet on the screen and the computer will predict what alphabet
you are seeing. You will be able to see the computer’s prediction. After this,
the computer will start to predict your visual imagination. You will be asked to
imagine an alphabet and the computer will make a prediction as to what alphabet
you were thinking about. Again, you will be able to see if the computer makes a
right or a wrong prediction, which make this experiment very interesting. More
detailed information about the experiment will be given to you in the pre-scan
briefing.

Time required: The experiment will take 2.5 hours from start to finish.

Risks: Because you will be staring at flickering patterns for about 90 minutes,
therefore tears may come out of your eyes during the experiment. You may
experience mild headache after the experiment as well.

Benefits: At the end of the study, we will provide a thorough explanation of
the study and of our hypotheses. We will describe the potential implications
of the results of the study both if our hypotheses are supported and if they are
disconfirmed. If you wish, you can send an email message to adnaniazi@gmail.
com and we will send you a copy of any manuscripts based on the research (or
summaries of our results).

Compensation: You will receive 25 Euros or 2.5 Study Pool credits for your
participation in this study. As a souvenir for your participation in the experiment,
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you will also be given a video of your brain anatomy and a video of your skull
in 3D. These will be emailed to you within two weeks after your participation in
the experiment.

Eligibility Requirements: Normal or corrected to normal vision, no family his-
tory of epilepsy, no tattoos on the neck, no braces, no metal implants, no piercing,
must be at least 18 or older and must be able to understand English.

Participation and withdrawal: Your participation in this study is completely
voluntary, and you may withdraw at any time without penalty. You may withdraw
by informing the researcher that you no longer wish to participate (no questions
will be asked).

Confidentiality: Your participation in this study will remain confidential and
there will be no link between your responses and your identity. Participation
and withdrawal: You can withdraw from the study at anytime without giving a
reason. How to contact the researchers: If you have questions or concerns about
your participation or payment, or want to request a summary of research find-
ings, please contact the researcher:

Name: Adnan Niazi
Email: adnaniazi@gmail.com
Mobile: *** *

*kk

Whom to contact about your rights in this research: For questions, concerns,
suggestions, or complaints that are not being addressed by the researcher, or
research-related harm: Committee on the Use of Human Subjects in Research
(Commissie Mensgebonden Onderzoek) at UMC St. Radboud.

http://www.cmoregio-a-n.nl/

Agreement

The nature and purpose of this research have been sufficiently explained and I
agree to participate in this study. I understand that I am free to withdraw at any
time without incurring any penalty.

Signature:
Date:
Name:
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APPENDIX B

Experiment 2 - Informed consent form

Please consider this information carefully before deciding whether to participate
in this research.

Purpose of the research: The experiment uses fMRI to ascertain whether you
can voluntarily attend to one stimulus when presented with two overlapping
stimuli and if this attended stimulus could be decoded.

What you will do in this research: In the first 30 minutes of the experiment, we
will brief you about the whole experiment. Then we will put you in the scanner
and start the experiment. For the next 25 minutes, you will see pictures of famous
faces and famous places. During this time the computer will train itself.

Once the computer is trained, we will present you two overlapping pictures, one
of a famous person such as Michael Jackson and the other of a famous landmark
such as Eiffel Tower. Your task will be to focus only on one of the picture. De-
pending on which picture you are focusing on, the attended picture will become
more and more visible whereas the unattended picture will fade out. This task
will take about 45 minutes

Time required: The experiment will take 2 to 2.5 hours from start to finish.
Risks: There are no risk involved in taking part in this experiment.

Benefits: At the end of the study, we will provide a thorough explanation of
the study and of our hypotheses. We will describe the potential implications
of the results of the study both if our hypotheses are supported and if they are
disconfirmed. If you wish, you can send an email message to adnaniazi@gmail.
com and we will send you a copy of any manuscripts based on the research (or
summaries of our results).

Compensation: You will receive 25 Euros or 2.5 Study Pool credits for your
participation in this study. As a souvenir for your participation in the experiment,
you will also be given a video of your brain anatomy and a video of your skull
in 3D. These will be emailed to you within two weeks after your participation in
the experiment.

Eligibility Requirements: Normal eyesight without glasses or contact lenses, no
tattoos on the neck, no braces, no metal implants, no piercing, must be at least
18 or older and must be able to understand English.

Participation and withdrawal: Your participation in this study is completely
voluntary, and you may withdraw at any time without penalty. You may withdraw
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by informing the researcher that you no longer wish to participate (no questions
will be asked).

Confidentiality: Your participation in this study will remain confidential and
there will be no link between your responses and your identity. Participation
and withdrawal: You can withdraw from the study at anytime without giving a
reason. How to contact the researchers: If you have questions or concerns about
your participation or payment, or want to request a summary of research find-
ings, please contact the researcher:

Name: Adnan Niazi
Email: adnaniazi@gmail.com
Mobile: %%k

Whom to contact about your rights in this research: For questions, concerns,
suggestions, or complaints that are not being addressed by the researcher, or
research-related harm: Committee on the Use of Human Subjects in Research
(Commissie Mensgebonden Onderzoek) at UMC St. Radboud.

http://www.cmoregio-a-n.nl/

Agreement

The nature and purpose of this research have been sufficiently explained and I
agree to participate in this study. I understand that I am free to withdraw at any
time without incurring any penalty.

Signature:

Date:

Name:
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General Informed Consent From

Donders Institute 0

for Brain, Cognition and Behaviour

Donders Centre for Cognitive Neuroimaging

STUDYSPECIFIC INFORMED CONSENT FORM
For participation in:*

[ Iwveec [Jeec [ MR [ Behavioural

*tick the applicable box(es)

To be filled out by the PARTICIPANT prior to the start of the experiment:

| confirm that:
- | was satisfactorily informed about the study concerned both verbally and in writing by means of
the general information brochure and additional study specific information brochure(s) (versions
6.1, February 2012)
- | have had the opportunity to put forward questions regarding the study and that these questions
have been answered satisfactorily
- | have carefully considered my participation in the experiment.
- | participate of my own free will.
| agree that:
- My data will be acquired and stored for scientific purposes as mentioned in the general
information brochure.
- lwill be informed by a designated physician about any new information which is of medical
relevance to me.
| understand that:
- | have the right to withdraw from the experiment at any time without having to give a reason.
- My privacy is protected according to Dutch law.
- My consent will be sought every time | participate in a new experiment.

| give my consent to take part in this experiment:

NaME: ..t Date of birth:..........cocooeiiiiii i, (dd/mmljj)

Signature:...

| agree that my experimental and coded data for strict scientifically reasons will be shared with others:
YES / NO*
*encircle preference

To be filled by the RESEARCHER prior to the start of the experiment:
The undersigned declares that the person named above has been informed both in writing and in person
about the experiment. He /she guarantees subjects’ privacy protection according to Dutch law.
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APPENDIX D

Vividness of Visual Imagery Questionnaire (VVIQ)

The VVIQ questionnaire was designed in Inquisit 2.0.60616 [Computer soft-
ware]. (2006). Seattle, WA: Millisecond Software and conducted on a computer
after the experiment was over. The VVIQ contains sixteen questions and these
are asked twice, once with eyes open and once with eyes closed. Subjects have
to rate the imagery corresponding to each question on a 5 point Likert scale. The
rating 5 was assigned to most vivid imagery and the rating 1 was assigned when
no mental image could be formed by the subject®. The total VVIQ score was cal-
culated by adding the rating on all 32 question. Given below are the screenshots
of instructions and the entire questionnaire.

The enitre questionairre will take about 10 minutes of your life.
Please do not rush through the questionairre.
(if you try to rush, the software will automatically detect it and will slow down the rate at which the questionairre progresses)
The aim of this test is to judge your ability to imagine.
The questions in this test will ask you to form mental pictures of something in your mind. You will then be
asked to rate how clearly or vividly you were able to form that mental image.

You can assign this rating on a 5 point scale, shown below.

Perfectly dear & vivid Reasonably dear Moderately cear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all

So for example, if the you are able to form the mental image, such that its reasonably clear and vidid, then
drag the slider to the postion shown below

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim atall
ra
We will now begin the questionairre (
Please imagine with your eyes OPEN
Press Next to begin 5

NEXT

8In the original VVIQ test the rating is assigned in the opposite way i.e, rating 5 for no mental image
and rating 1 for the most vivid mental image.
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| In answering items 1 to 4, think of some relative or friend whom you frequently see and consider carefully
LY the picture that comes before your mind’s eye.

1). The exact contour of face, head, shoulders and body.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if T was actually seeing it and vivid and vivid and dim at all
i
2). Characteristic poses of head, attitudes of body etc.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if T was actually seeing it and vivid and vivid and dim at all
i
3). The precise carriage, length of step, etc. in walking.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if T was actually seeing it and vivid and vivid and dim at all
i
4). The different colours worn in some familiar clothes.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if T was actually seeing it and vivid and vivid and dim at all
i

~ | Imagine the items mentioned in the following questions and rate the vividness of your imagination

5). The sun is rising above the horizon into a hazy sky.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
0]
6). The sky clears and surrounds the sun with blueness.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
d
7). Clouds. A storm blows up, with flashes of lightening.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim atall
0]

8). A rainbow appears.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
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Tn answerina items 9 to 12, think of the front of a shop which you often go to. Consider the picture that
comes before your mind’s eye.

9). The overall appearance of the shop from the opposite side of the road.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
2]
10). A window display including colours, shape and details of individual items for sale.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
d
11). You are near the entrance. The colour, shape an details of the door.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
g
12). You enter the shop and go to the counter. The counter assistant serves you. Money changes hands
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
d
In answering items 13 to 16, think of a country scene which involves trees, mountains and a lake.
13). The contours of the landscape.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
o
14). The colour and shape of the trees.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
2
15). The colour and shape of the lake.
Perfectly clear & vivid Reasonably dear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
2

16). A strong wind blows on the trees and on the lake causing waves.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and wivi and vivi and dim at all
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T

We will now repeat the same questionairre but this time
while answering the questions, you have to imagine with
your eyes closed

Please do not rush through the questionairre.
(if you try to rush, the software will automatically detect it and will slow down the
rate at which the questionairre progresses)

Please remember to imagine with "
your eyes CLOSED

Press Next to begin

NEXT

In answering items 1 to 4, think of some relative or friend whom you frequently see and consider carefully

the picture that comes before your mind’s eye.
1). The exact contour of face, head, shoulders and body.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all

2). Characteristic poses of head, attitudes of body etc.

Perfectly clear & vivid Reasanably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim atall

3). The precise carriage, length of step, etc. in walking

Perfectly clear & vivid Reasonably clear Maderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all

4). The different colours worn in some familiar clothes.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
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l Imagine the items mentioned in the following questions and rate the vividness of your imagination
5 5). The sun is rising above the horizon into a hazy sky.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
o
6). The sky clears and surrounds the sun with blueness
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
o
7). Clouds. A storm blows up, with flashes of lightening.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
o
8). A rainbow appears.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
d
‘ In answerina items 9 to 12, think of the front of a shop which you often go to. Consider the picture that
)
9). The overall appearance of the shop from the opposite side of the road.
Perfectly clear & vivid Reasonably dear Moderately dlear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
g
10). A window display including colours, shape and details of individual items for sale.
Perfectly clear & vivid Reasonably dear Moderately dlear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
g
11). You are near the entrance. The colour, shape an details of the door.
Perfectly clear & vivid Reasonably dear Moderately dlear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
g}

12). You enter the shop and go to the counter. The counter assistant serves you. Money changes hands.

Perfectly clear & vivid Reasonably dear Moderately clear Vague No image
as if 1 was actually seeing it and vivid and vivid and dim at all
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T

In answering items 13 to 16, think of a country scene which involves trees, mountains and a lake.

13). The contours of the landscape.

Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
d
14). The colour and shape of the trees.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
d
15). The colour and shape of the lake.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim at all
o
16). A strong wind blows on the trees and on the lake causing waves.
Perfectly clear & vivid Reasonably clear Moderately clear Vague No image
as if I was actually seeing it and vivid and vivid and dim atall
o

. -— -
UNIVERSITEIT TWENTEG, . 7S

Thank you. You are almost done
Please take a few more moments to fill in a demographic questionnaire

This tast wouldn't take more than 1 minute

Press 'Start' to go to the questionaire

Start
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Demographic Questionionnaire (Page 1 of 3)

1). What is your age

2). Sex

O Female
O Male

3). Country/Region of Primary Citizenship

4). How interesting or boring was this experiment for you? (move the slider)

very moderatly slightly no slightly moderalty very
interesting interesting interesting opinion boring boring boring
0]

5). Do you normally use glasses or contact lenses?

0 Yes

D No

6). If your answer to the previous question was 'Yes', then how much is the deviation in your left and right eye ? If you don't remember it exactly just wirte a
rough estimate.

Demographic Questionionnaire (Page 2 of 3)
7). Have you used contact lenses during the experiment?

@) Yes
7 No

8). Have you used glasses during the experiment?

@ Yes
Na

9). Are you feeling any headache after the experiment?

) Yes
© No

10). which of the following alphabets did you find difficult to imagine? {you can check multiple boxes, if you want to).

[o
Eo
[N
[EE
ErR
Es
E1
mT
FEv
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Demographic Questionionnaire (Page 3 of 3)

11). Would you like to receive an MRI video of your brain and your face in 3D, as a souvenir for your participation in the experiment?

117

12). If your answer to the previous question was "Yes', then please write down your GMAIL or YAHOO or MSN email address. We will email you the video on that

address.

13). If you have any comments or questions, please write them down.

Great

. . You are done !
UNIVERSITEIT T‘«’\»’EI\]T.EQ;J .

We appreciate your partcipation

Radboud Universiteit Adnan Niazi,
F @ Marcel van Gerven,
Niimegen g 3 Philip van den Broek, Peter Desain, Mannes Poel

e

Donders Institute

for brain, cognition and behaviour

Real time decoding of visual and imagined percepts
For any queries or comments contact

Adnan Niazi, Room B.00.74, Spinozagebouw Laag, Montessorilaan 3,

Radboud University, Njmegen (Email: adnaniazi@gmail.com)

EXIT
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Experiment 1- Pre-scan briefing and instructions

You willnow be presented with random flashing
patterns, some of which are shown below

Please fixate on the red fixation dot * in the middle
of the screen, at all times

This task will take approx. 45 minutes
READY !

Click |E| to run the video.
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Processing traming data and training cl
1s required for the following test s

assifier. This
essions.

This will take about 5 minutes...

Instructions for the next task will follow.
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Previously you saw various rI =5 ik i
OCe0 00000 I-

random flashing patterns

Now you will see flashing alphabets on the screen, as shown
below

This task will take approx. 10 minutes

Please fixate on the red fixation dot « in the middle of the
screen, at all times

(»]

Click [>] to run the video.
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You will again see various flashing alphabets on the screen, as
shown below

After 9 seconds into each letter, the grey boxes would start to disappear.
The aim is to make all the grey boxes disappear that do not represent part
of the flashing alphabet, as see examples below)

DOMEFRS T

This task will take approx. 10 minutes

Please fixate on the red fixation dot * in the middle of the
screen, at all times

>

Click [>] to run the video.
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At the beginning of each trial, you would be
presented a cue alphabet in the middle of the
screen. Supposethe cueis letter e.
0000
The cue letter e would then disappear and the red fixation dot
will turn green. This is an indication that you have to start
imagining the capital E on the grid. You have to stop
imagining when the fixation dot turns red again.
Foreach of letter presented, you have to imagine its
corresponding capital letter on the grid . The example below
shows the pattern you have to imagine for the cue letters
donersitu respectively

Please fixate on the fixation dot at all times

Click [>] to run the video.
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At the beginning of each trial, you would be
presented acue letter in the middle of the
screen. Suppose the cueis letter e. OO0

The cue letter e would then disappear and the red fixation dot will turn
green. This is an indication that you have to start imagining the capital E
on the grid. Stop imagining once the fixation dot turns red again.

For each of letter presented, youhave to imagine its corresponding
capital letter on the grid . The example below shows the pattern you have
to imagine for the cue le‘rters donersitu respecm ely

DOMERS 1

After 9 seconds into each ‘mal the grey rectangles that do not represem
the imagined letter, would start to disappear. This gives you feedback
about your imagination performance.

Please fixate on the fixation dot at all times.

Click [>] to run the video.
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Please adjust the mirror properly in the scanner, so that you
are conformably viewing the middle of the screen
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Do this adjustment

of the experiment
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APPENDIX F

Experiment 2- Pre-scan briefing and instructions

You will be presented with blocks of pictures of famous faces and
famous places. Between cach two consecutive blocks is a 12 second
rest period in which only a fixation cross + will be shown.

In every block, the first picture is repeated somewhere in that block.
Your task is to press any button on the Button Box whenever you
see the first picture repeated in a block. The whole scenario is
depicted below

Press Button Press Button

This task will take about 25 minutes

Click |E| to run the video.







APPENDIX F

Every trial will begin with a brief display of a target picture, followed by a brief
display of a non-target picture. You will then be shown the two images overlapped
over each other. Your task is to always think about the target picture . If the trial is in
the Feedback block then the target picture will start to become more and more clear
as the time progresses where as the non-target picture will fade away (shown below).

Example of
one trial in a
Feedback
Block

T
Think about the target picture
and it will become more and more clear

If the trial 1s 1n 18 Non-Feedback Block, then nothing will happen to the overlapped
pictures (as shown below). But you still always need to think of the target picture.

Example of
one trial in a A : TR
v g + i
Non- s Py
Feedback = _ 1
Black A /e Always think about the target picture but in non feedback blocks the
the target picture would not become clear.

Y

Click |E| to run the video.
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Please adjust the mirror properly in the scanner, so that you
are conformably viewing the middle of the screen
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Do this adjustment

of the experiment
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APPENDIX G
Experiment 1- Best results

The video below shows the reconstruction for Visual perception withour feed-
back condition’ in a pilot experiment with author as the test subject. The decod-
ing obtained in this pilor was the best we ever recorded (64%). Unfortunately,
due to a technical malfunction, the remaining 3 conditions had to be aborted. At
that time, only author and Philip van den Broek knew how to operate the real-
time fMRI. Because of non availability of Philip, it was not possible to run a full
experiment AGAIN with author in the scanner. Burt this video alone is a proof that
it is possible to decode perceived stimuli in real time and thar the reconstructions
are not just some random patterns but are quite structured and do represent the
perceived character.

(>]

Note: The white letter is the perceived letter. Its flickering has been stopped in this video
for easy viewing by the viewer. The empty grey rectangles show the reconstructed letter.
The reconstruction is updated every TR. The video is running at three times the normal
speed. The rest periods and the hemodynamic lag have been removed. Decoding accuracy
is 64%.
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Experiment 2- Post-hoc analysis video of real-time fMRI experiment
for Subject 07

Please follow the click the links below to find videos of the feedback and non-feedback blocks of the actual experiment
run for subject 07.

Video of feedback condition

Video of non-feedback blocks

Video Information: The video shows trial-by-trial rerun of the actual experiment. On
the left hand side, the graph shows the ary as it evolves during the 12 scans of a trial.
If the graph is colored green then it means the dominate picture in the hybrid is the
target. If the graph is red then it mean the dominate picture is the non-target and that the
classification is going in the wrong direction. The bar labeled "Prob’ shows the probability
of the prediction made by the classifier. Green means that the prediction is right and red
means that prediction is wrong. The rest is self explanatory.

Note: The first two TRs where the feedback remains static due to pipeline delay are not
shown in this video.


http://www.analyze4d.com/misc_adnan/feedback_blocks.html�
http://www.analyze4d.com/misc_adnan/nonfeedback_blocks.html�
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